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a b s t r a c t 

This paper concerns a catastrophe put option with default risk. Catastrophe events are described by the 

exponential jump model, and the default event of the option issuer is specified by the intensity based 

model with a stochastic intensity. Under this model, we derive the explicit analytical pricing formula of a 

catastrophe put option with default risk by using the multidimensional Girsanov theorem repeatedly. We 

also observe the effects of default risk on the prices of a catastrophe put option through the numerical 

experiment. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In finance, the default risk (or credit risk) has classically been 

dealt with two types of approaches: the intensity based approach 

(or reduced-form) and the structural approach (or firm value- 

based). The intensity-based models have been developed with as- 

sumption that default is controlled by the first jump of a given 

counting process with intensity. Namely, the bankruptcy in this 

model is triggered by the first jump of a Poisson process and the 

default time of underlying asset depends on some intensity pro- 

cess. On the other hands, the structural models depend on the 

dynamic of the firm’s value. The structural model for default risk 

was first proposed by Merton [1] . The Merton model assumes that 

firm’s value is defined by the value of debt and the value of eq- 

uity. Defaults of firms under the Merton model just occur at the 

maturity of bond if the debt holders can not redeem their duty. 

Recently, based on the structural of Merton, many researchers have 

studied the pricing of options with default risk, which called Vul- 

nerable option. 

Johnson and Stulz [2] first consider the default risk for option 

pricing by assuming that the options depend on the liabilities of 

the option issuers. Based on the structural model of Merton, if the 

value of the option is less than the value of the option issuer at the 

maturity, the default of the option issuer happens and the option 

investor takes the assets of the option issuer. For a more realistic 

environment, Klein [3] extended the result of Johnson and Stulz by 
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allowing not only the correlation between the option issuers as- 

set and the underlying asset but also the proportional recovery of 

nominal claims when the default happens. Klein and Inglis [4] pro- 

vide the pricing formula of vulnerable options with the stochastic 

interest rate using the partial differential equation method. Chang 

and Hung [5] derived analytic pricing formula for the vulnerable 

American options under the Black-Scholes model. Kim and Koo 

[6] used the Mellin transform approach to solve the partial dif- 

ferential equation of Exchange option with credit risk under the 

model of Klein [3] . In addition, in recent years, many researchers 

have studied the vulnerable options for the real financial market, 

which follows the stochastic volatility model [7–10] . Concretely, 

Yang et al. [11] and Lee et al. [12] . considered the vulnerable op- 

tion when the volatilities of underlying assets follow the stochastic 

dynamics. Kim [13] also adopted a regime-switching model to con- 

sider the two underlying assets affected by a stochastically chang- 

ing market environment. These studies dealt with the valuations 

of options with default risk based on the structural model. On the 

other hand, Fard [14] provided recently the analytical pricing for- 

mulas of European vulnerable options based on an intensity based 

model. Concretely, Fard [14] studied the vulnerable options when 

the underlying asset process follows a generalized jump-diffusion 

model. 

The insurance losses from the global natural catastrophe events 

such as floods, earthquakes, typhoons and forest fires have grown 

rapidly in recent years. The increase of insurance losses has im- 

posed the insurance companies to find the ways to hedge against 

risks caused by the catastrophe events. In order to hedge the risks, 
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insurance companies have used the financial derivatives such as 

bonds, futures and options. 

Catastrophe put option is one of the most popular financial 

derivatives for catastrophe risk management. Catastrophe put op- 

tions first were considered by Cox et al. [15] . The pricing model 

of them assumes the underlying asset process follows the geo- 

metric Brownian motion with downward jump, and the catastro- 

phe event influences only the stock price. Janimunggal and Wang 

[16] develop the results of Cox et al. [15] by providing the pric- 

ing formula of the European Catastrophe put option with stochas- 

tic interest rate and compound Poisson processes. Chang and Hung 

[17] provided the explicit analytic pricing formulas for catastrophe 

put options when the underlying asset process follows a Lévy pro- 

cess with finite activity. Lin and Wang [18] investigated the perpet- 

ual American catastrophe put options by using a penalty function 

approach. In addition, Yu [19] proposed the catastrophe put option 

pricing model by assuming that the underlying asset processes fol- 

low an exponential jump process with jump terms modeled by two 

compound Poisson processes. Wang [20] considered a new class of 

catastrophe put options. More concretely, Wang [20] studied catas- 

trophe put options with target variance, which represents the ex- 

pectation of the insurance company for the future realized vari- 

ance. 

Recently, the pricing models for catastrophe put option with 

default risk have been studied. Jiang et al. [21] first proposed the 

valuation model of catastrophe put option by assuming of default 

risk model proposed by Klein [3] . Wang [22] developed the pricing 

model of catastrophe put options with default risk when default 

of option issuer allows to occur at any time prior to maturity of 

option. Here, Wang [22] assumed that catastrophe event follows a 

doubly stochastic Poisson process, and the stock process is affected 

by the catastrophe losses. All of them utilized a structural model 

for modeling of the default risk. In this paper, we consider the in- 

tensity based model for pricing of the catastrophe put option with 

default risk based on the model of Fard [14] . 

This paper is organized as follows. In Section 2 , we introduce 

the model for the underlying asset, the stochastic interest rate, and 

the catastrophe losses. In Section 3 , we derive the explicit pric- 

ing formula for the catastrophe put option with default risk. In 

Section 4 , we provide some examples of option prices to observe 

the effects of default risk with respect to model parameters. Fi- 

nally, Section 5 provides the concluding remarks. 

2. The model 

We assume that a given filtered complete probability space 

(�, F , {F(t) } , P ) satisfies the usual conditions, where P presents 

a risk-neutral probability measure and the filtration {F(t) } . Under 

the measure P , as in Kou and Wang [23] , the underlying asset price 

S ( t ) with the exponential jump diffusion model 1 is given by 

S(t) = S(0) exp 

{∫ t 

0 

r(s ) ds −
(

1 

2 

σ 2 
1 + λN ζ

)
t 

+ σ1 dW 1 (t) − c 

N(t) ∑ 

i =1 

l i 

} 

, (1) 

where σ 1 is a volatility of underlying asset, c is a positive con- 

version factor, W 1 ( t ) is a standard Brownian motion and N ( t ) is a 

Poisson process with intensity λN . We also assume that the risk- 

neutral instantaneous shot rate r ( t ) is governed by the Vasicek 

1 The exponential jump model of Kou and Wang is one of the most popular jump 

models for valuing the financial derivatives. Many researchers have developed the 

exponential jump model, and have adopted the model to price various financial 

derivatives (e.g., see [24,25] ). 

model [26] as 

dr(t) = k (θ − r(t)) dt + σ2 dW 2 (t) , 

where k, θ and σ 2 are constants and W 2 ( t ) is a standard Brown- 

ian motion under the measure P satisfying d W 1 (t) d W 2 (t) = ρ12 dt . 

The log jump sizes (the sizes of loss) { l 1 , l 2 , ���} form a sequence 

of independent identically distributed random variables with the 

double exponential density f l ( x ) defined by 

f l (x ) = pη1 e 
−η1 x 1 { x ≥0 } + qη2 e 

η2 x 1 { x< 0 } , 
where p, q ≥ 0, p + q = 1 , η1 > 0, η2 > 0, and 

ζ = 

pη1 

η1 − 1 

+ 

qη2 

η2 + 1 

− 1 . 

Moreover, all sources of randomness W 1 ( t ), N ( t ) and { l 1 , l 2 , ���} 

are independent under the measure P . Since all jumps of the un- 

derlying asset by catastrophic events are downward jumps, as in 

Chang and Hung [17] , we consider only the negative exponentially 

distributed jump in the exponential jump diffusion model. Then 

the underlying asset price S ( t ) under the risk-neutral measure P is 

given by 

S(t) = S(0) exp 

{∫ t 

0 

r(s ) ds −
(

1 

2 

σ 2 
1 + λ∗ζ ∗

)
t 

+ σ1 W 1 (t) − c 

N ∗(t) ∑ 

i =1 

l d i 

} 

, (2) 

where N 

∗( t ) is the Poisson process with intensity λ∗ = λN (ζ + 1) 

and ζ ∗ = 

η∗
2 

η∗
2 
+1 − 1 with η∗

2 
= η2 + 1 and ζ = 

η2 
η2 +1 − 1 . In addi- 

tion, the log jump sizes {−l d 
1 
, −l d 

2 
, · · · } are independent identically 

distributed random variables indicating i th downward jump with 

density function defined by 

ν(x ) = λ∗ f d (x ) = λ∗η∗
2 e 

η∗
2 x 1 { x< 0 } , η∗

2 > 0 . 

If we define the loss process of the insured to be L (t) = ∑ N ∗(t) 
i =1 

l d 
i 
, the payoff of the catastrophe put option is defined as 

payoff = 1 { L (T ) −L (0) > L } 

{
K − S(T ) , S(T ) < K and L (T ) − L (0) > L , 

0 , L (T ) − L (0) ≤ L , 

where T is the maturity, L is the trigger level of losses, K is the 

strike price at which the issuer is obligate to purchase unit shares 

if the cumulative losses go over the level L , and L (T ) − L (0) is the 

total losses of the insured over the time [0, T ). With these assump- 

tions, we consider the catastrophe put option with default risk un- 

der the intensity based model in the next section. 

3. Pricing catastrophe put option with default risk 

We consider the valuation of catastrophe put option with de- 

fault risk based on an intensity based model in this section. As in 

Fard [14] , under the risk-neutral measure P , we assume that the 

default intensity process is controlled by the following process 

dλ(t) = a (b − λ(t)) dt + σ3 dW 3 (t) , 

where σ 3 is a positive constant, and W 3 ( t ) is a standard Brownian 

motion satisfying d W 1 (t) d W 3 (t) = ρ13 d t, d W 2 (t) d W 3 (t) = ρ23 dt

with the Brownian motions W 1 ( t ) and W 2 ( t ) defined in Section 2 . 

We also define the filtration F(t) generated by F(t) = F 

S (t) ∨ 

F 

r (t) ∨ F 

λ(t) ∨ H(t ) , where F 

S = σ (S(t ) , s ≤ t) , F 

r = σ (r(t) , s ≤
t) , F 

λ = σ (λ(t) , s ≤ t) and H(t) = σ (1 { τ≤t} , s ≤ t) . Then the value 

V of the catastrophe put option with default risk at time 0 is given 

by 

V = E [ e −
∫ T 

0 r(s ) ds (w (K − S(T )) + 1 { τ≤T,L (T ) −L (0) ≥L } 
+(K − S(T )) + 1 { τ≥T,L (T ) −L (0) ≥L } ) |F(0)] , (3) 
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