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a b s t r a c t 

We have recently introduced Forman’s discretization of Ricci curvature to the realm of complex networks. 

Forman curvature is an edge-based measure whose mathematical definition elegantly encapsulates the 

weights of nodes and edges in a complex network. In this contribution, we perform a comparative analy- 

sis of Forman curvature with other edge-based measures such as edge betweenness, embeddedness and 

dispersion in diverse model and real networks. We find that Forman curvature in comparison to embed- 

dedness or dispersion is a better indicator of the importance of an edge for the large-scale connectivity 

of complex networks. Based on the definition of the Forman curvature of edges, there are two natural 

ways to define the Forman curvature of nodes in a network. In this contribution, we also examine these 

two possible definitions of Forman curvature of nodes in diverse model and real networks. Based on 

our empirical analysis, we find that in practice the unnormalized definition of the Forman curvature of 

nodes with the choice of combinatorial node weights is a better indicator of the importance of nodes in 

complex networks. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Discrete mathematics, especially graph theory [1,2] , has made 

vast contributions towards our understanding of the structure of 

complex networks [3–9] . In network theory [3–9] , a recent fo- 

cus has been the development of measures inspired by geome- 

try [10–22] for the characterization of complex networks. Curva- 

ture is a central concept in geometry, and in particular, Ricci cur- 

vature is a classical notion of Riemannia n geometry that quan- 

tifies both volume growth of infinitesimal balls as well as disper- 

sion rate of geodesics [23] . Two discretizations of the classical Ricci 

curvature, Ollivier–Ricci curvature [24–27] and Forman–Ricci cur- 

vature [28] , have been introduced to the domain of complex net- 

works [11,12,14–17,19] . Firstly, Ollivier [24–27] in 2007 proposed 

a discretization of the Ricci curvature. Subsequently, Ollivier–Ricci 

curvature was adapted to the setting of undirected graphs, and 

this concept has proven to be successful in the analysis of com- 

plex networks [11,12,14–17] . Secondly, even before Ollivier, Forman 

[28] had devised another discretization of the Ricci curvature. Re- 
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cently, we [19] have adapted the Forman–Ricci curvature to the do- 

main of complex networks. 

In the context of complex networks, the Forman curvature cap- 

tures the second property of the Ricci curvature, namely, the dis- 

persion rate of geodesics. This is achieved by adapting to the dis- 

crete setting of graphs, the classical Bochner–Weitzenböck formula 

[23] , which gives the connection between curvature and the Lapla- 

cian on a Riemannian manifold. The resulting definition of the For- 

man curvature of an edge [19] is remarkably simple to compute 

in complex networks. Importantly, the definition of the Forman 

curvature [19] captures on the one hand the combinatorial prop- 

erties of the network and on the other hand naturally incorpo- 

rates the weights of nodes and edges in the network. Thus, Forman 

curvature is suitable for the geometrical characterization of both 

weighted and unweighted networks. In our recent work [19] , we 

have successfully shown that Forman curvature represents a nat- 

ural, as well as computationally efficient tool for the analysis and 

classification of complex networks. 

In contrast to node-based measures such as degree, clustering 

coefficient [4,29] and betweenness centrality [8,30] , Forman cur- 

vature [19] is an edge-based measure that quantifies the extent 

of spreading at the ends of edges in a network. The more is the 

spreading at the ends of edges, the more negative is the Forman 
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curvature. We [19] have previously shown that the Forman curva- 

ture is an indicator of the relative importance of edges in model 

and real networks. In contrast to several node-based measures, 

relatively few edge-based measures have been proposed to date 

for the analysis of complex networks. Besides Forman curvature 

[19] , the available edge-based measures include edge betweenness 

[30,31] , embeddedness [32] and dispersion [33] . Edge betweenness 

[30,31] , embeddedness [32] and dispersion [33] have also been 

employed to quantify the importance of edges in complex net- 

works, in particular, social networks. In this contribution, we there- 

fore perform a comparative analysis of Forman curavture with edge 

betweenness, embeddedness and dispersion in model and real net- 

works. 

An attractive feature of the Forman curvature is its applicability 

to networks with any set of positive weights for nodes and edges 

[19] . This feature renders the Forman curvature a powerful tool for 

analysis of weighted networks where the user can specify the best 

set of weights for nodes and edges. However, the available maps of 

real networks seldom specify the weights of nodes or edges in the 

network. While analyzing networks without prescribed weights, 

there are at least two possible choices for the node weights in 

the definition of the Forman curvature of an edge which are in- 

troduced in the next section. In this contribution, we also study in 

model and real networks the effect of the two possible choices of 

node weights in the definition of the Forman curvature of an edge. 

Although Forman curvature is a measure associated to edges, 

it is also natural to desire an extension of the concept to nodes 

as most measures employed in network theory are associated to 

nodes in a network. However, intrinsically there isn’t a unique 

manner to define the Forman curvature of a node based on the 

definition of the Forman curvature of an edge in a network. In- 

stead, two natural ways present themselves to define the Forman 

curvature of a node based on the definition of the Forman curva- 

ture of an edge which are introduced in the next section. In this 

contribution, we also systematically examine in model and real 

networks the two definitions of the Forman curvature for nodes. 

The remainder of this paper is organized as follows. In 

Section 2 , we present a brief review of the Forman curvature, the 

definition of the Forman curvature of an edge, the two choices of 

node weights in the definition of the Forman curvature of an edge, 

and the two possible definitions of the Forman curvature of a node 

in a network. In Section 3 , we describe the model and real net- 

works investigated here. In Section 4 , we present our results, and 

in Section 5 , we conclude with a short summary and possible ap- 

plications. 

2. Theory 

2.1. Forman curvature – a brief overview 

Forman’s [28] discretization of the classical Ricci curvature is 

applicable to a large class of geometric objects, the so called ( reg- 

ular ) CW complexes . Forman’s discretization of the Ricci curvature 

[28] is derived on the basis of the so called Bochner–Weitzenböck 

formula [23] which in its classical form connects curvature and 

the Laplacian on a Riemannian manifold. However, while the well 

known version of the Bochner–Weitzenböck formula relates the 

Laplacain operator of functions defined on a given manifold, a rel- 

atively less known though by no means any less important ver- 

sion of the Bochner–Weitzenböck formula concerns forms rather 

than functions. It is this less well known variant of the Bochner–

Weitzenböck formula that enables adaptation to the large class of 

geometric objects, the so called CW complexes, where cells play 

the role of the forms in the original, standard setting. 

It is important to underline that the definition of the Forman 

curvature is valid for a wide spectrum of possible weights. In his 

original contribution, Forman [28] had motivated the weights in 

his curvature definition from the point of view of simple geometri- 

cal quantities such as length, area and volume. However, the spec- 

trum of possible sets of weights that are admissible in the defi- 

nition of Forman curvature is far more extensive and general. An 

important if not the main motivation behind considering weighted 

manifolds (or, as in Forman’s work, CW complexes), stems from the 

observation made by Cheeger, Gromov and others [34,35] that to 

control collapse (degeneracy) of manifolds under curvature bounds 

(mainly, Ricci curvature bounds), one has to consider the vol- 

ume and also more general measures. For other motivations, such 

as appertaining to minimal surfaces, we refer the reader to [36] . 

While in several approaches, the considered measures typically 

satisfy certain smoothness properties, Forman’s method allows for 

weights that do not satisfy any such properties. Indeed, Forman’s 

approach can be viewed as an extreme discretization of the notion 

of metric measure space, where the underlying structure is well be- 

haved (a manifold), and the overlay measure also satisfies similar 

properties, by replacing the smooth manifolds with the more gen- 

eral CW complexes along with not imposing any constraints on the 

attached discrete measure (i.e., the given weights). That being said, 

one of the remarkable characteristics of Forman’s work is the fact 

that a geometric structure, so to say, can be recovered from any 

set of weights. More precisely, any given set of (positive) weights 

involved in the computation of the Ricci curvature, can be arbi- 

trarily well approximated by a set of natural or geometric weights, 

i.e., weights that conform to dimensional scaling properties similar 

to those of the truly geometric measures such as length, area and 

volume. 

2.2. Forman curvature of an edge 

As classical Ricci curvature operates directionally along the 

vectors, the concept is naturally defined for edges in the net- 

work. Although for the general n -dimensional case, the Bochner–

Weitzenböck formula and the curvature term is given by a quite 

complicated formula, in the limiting 1-dimensional case of graphs 

or networks, the mathematical formula for the Forman curvature 

of an edge e in the network, as given by [19] , is quite simple: 

F (e ) = w e 

( 

w v 1 
w e 

+ 

w v 2 
w e 

−
∑ 

e v 1 ∼ e, e v 2 ∼ e 

[ 

w v 1 √ 

w e w e v 1 

+ 

w v 2 √ 

w e w e v 2 

] ) 

;

(1) 

where e denotes the edge under consideration between two nodes 

v 1 and v 2 , w e denotes the weight of the edge e under considera- 

tion, w v 1 and w v 2 denote the weights associated with the nodes 

v 1 and v 2 , respectively, e v 1 ∼ e and e v 2 ∼ e denote the set of edges 

incident on nodes v 1 and v 2 , respectively, after excluding the edge 

e under consideration which connects the two nodes v 1 and v 2 . 

Note that the indices e v 1 ∼ e and e v 2 ∼ e below the summation sign 

on the right hand side of Eq. (1) do not specify a double sum but 

rather specify a single sum, that is, 

∑ 

e v 1 ∼ e, e v 2 ∼ e 

[ 

w v 1 √ 

w e w e v 1 

+ 

w v 2 √ 

w e w e v 2 

] 

= 

∑ 

e v 1 ∼ e 

w v 1 √ 

w e w e v 1 

+ 

∑ 

e v 2 ∼ e 

w v 2 √ 

w e w e v 2 

As we have have emphasized before, any collection of positive 

weights can be inputed in the formula for the Forman curvature 

of an edge, a proof of the flexibility and adaptiveness of Forman’s 

curvature. Here, we would like to bring to the readers’ attention 

the fact that, in practice, one might be confronted with two sets 
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