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a b s t r a c t 

Arikoglu and Ozkol developed a new semi-analytical numerical technique, fractional differential transform 

method (FDTM), for solving fractional differential equations (FDEs). FDTM was not achieved for solving 

irrational order fractional differential equations. Here we develop a new method to be applicable for solv- 

ing rational or irrational order FDEs. This method is called the restricted fractional differential transform 

method (RFDTM). In fact, RFDTM is based on the restriction of the classical two dimensional differential 

transform methods. A useful theorem is provided, and Several FDEs are solved by using RFDTM. More- 

over, several illustrative examples are presented to demonstrate the accuracy and effectiveness of the 

proposed method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional calculus and FDEs are widely explored subject due to 

the great importance of many applications in fluid mechanics, biol- 

ogy, control theory of dynamical systems, probability and statistics, 

viscoelasticity, polymer modeling, finance, physics and engineering, 

see e.g. Schneider and Wyss [1] , Mainardi [2] , Magin et al. [3] , Ma- 

gin [4] , Metzler and Klafter [5] , Beyer and Kempfle [6] , Lederman 

et al. [7] , Bagley and Torvik [8] , Riewe [9] , Kulish and Lage [10] , 

Wyss [11] , Song and Wang [12] , and the works by Diethelm and 

Freed cf. Keil et al. [13] . Comprehensive reviews of literature con- 

cerning the application of fractional differential equations may be 

found in the books by Oldham and Spanier [14] , Diethelm [15] , and 

Podlubny [16] . 

There are very few of FDEs can be solved analytically. Thus, 

accurate and efficient numerical techniques are needed. Various 

semi-numerical techniques have been proposed for approximate 

solutions of the fractional order differential and fractional order in- 

tegral equations, For example, the Adomian decomposition method 

[17–21] , variational iteration method [18,22–26] , homotopy pertur- 

bation method [27–30] , Wavelet Method [31,32] , fractional differ- 

ence method [17,33] , and extrapolation method [34] . Another effi- 

cient and accurate semi-numerical method, such as FDTM, was in- 

troduced by Arikoglu and Ozkol [35] to solve linear and nonlinear 

initial value problems of fractional order, which utilize the form of 

fractional power series as the approximation to the exact solution. 
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It is appropriate to note that FDTM is currently of considerable in- 

terest for solving FDEs, see, e.g. ErtÄurk and Momani [36] , Oturanc 

et al. [37] , Arikoglu and Ozkol [38] , and later work followed by 

Nazari and Shahmorad [39] . 

The motivation for the present article is the work of Arikoglu 

and Ozkol [35,38] . Arikoglu and Ozkol [35] developed the differen- 

tial transform method (DTM) to introduce a new analytical tech- 

nique for solving FDEs that is named as FDTM. They argued that 

one should expand the analytic solution function as the following 

fractional power series [40] , 

y (x ) = 

∞ ∑ 

k =0 

F (k ) (x − x 0 ) 
k 
γ (1) 

where γ is the order of the fraction to be selected and F ( k ) is the 

kth fractional differential transform of y ( x )given by 

F ( k ) = 

⎧ ⎨ 

⎩ 

1 

( k/γ ) ! 

d k/γ f (x ) 

d x k/γ

∣∣∣∣
x = x 0 

k/γ ∈ Z + 

0 k/γ / ∈ Z + 
(2) 

Now, if the considering FDEs include a fractional derivative, 

say D 

α , where α is irrational number, then one cannot find γ in 

Eqs. (1) and (2) . So that, it is impossible to apply FDTM for solv- 

ing FDEs. The object of this work is to present a new technique, 

RFDTM, to be applicable to solve FDEs, which including rational 

or irrational fractional derivative. In the following sections RFDTM 

will be presented. 
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2. Restricted fractional differential transform method 

There are many definitions of fractional order derivative, e.g. 

Riemann–Liouville derivative, Grünwald–Letnikov derivative, Ca- 

puto derivative, Sonin–Letnikov derivative, Miller–Ross deriva- 

tive, Hadamard derivative, Weyl derivative, Marchaud derivative, 

Riesz–Miller derivative, Erdélyi–Kober derivative [15,16,41] . Caputo 

derivative is always used in FDEs to express of many real world 

physical problems since it has the advantage of defining integer or- 

der initial conditions. The Caputo derivative for any analytic func- 

tion u ( x ) is defined by [40] 

C D 

α
x 0 

u (x ) = 

1 

�(n − α) 

∫ x 

x 0 

u 

(n ) ( t) 

( x − t) 
α−n +1 

dt, n − 1 < α < n, n ∈ Z + 

(3) 

Let f ( x, y ): R 2 → R be analytical function then it can be express 

as multi Taylor series about ( x 0 , y 0 )as follows: 

f (x, y ) = 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

1 

i ! j! 

(
∂ i + j f (x, y ) 

∂ x i ∂ y j 

)
( x 0 , y 0 ) 

(x − x 0 ) 
i (y − y 0 ) 

j (4) 

By setting 

F (i, j) = 

1 

i ! j! 

(
∂ i + j f (x, y ) 

∂ x i ∂ y j 

)
( x 0 , y 0 ) 

(5) 

Then 

f (x, y ) = 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

F (i, j) (x − x 0 ) 
i (y − y 0 ) 

j (6) 

Clearly, F ( i, j ) in Eq. (5) is the two dimensions differential trans- 

form of the function f ( x, y ), while Eq. (6) represent the differential 

inverse transform of F ( i, j ). 

Now, If u (x ) = f (x, y ) | y = (x −x 0 ) 
α+ y 0 , where α > 0, that is, the two 

dimensional function f ( x, y ) is restricted to one dimensional func- 

tion u ( x ), then Eq. (5) and Eq. (6) respectively, become 

U(i, j) = F (i, j) = 

1 

i ! j! 

(
∂ i + j f (x, y ) 

∂ x i ∂ y j 

)
( x 0 , y 0 ) 

(7) 

u (x ) = 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

U(i, j) (x − x 0 ) 
i + α j (8) 

Eq. (7) is called the restricted fractional differential transform 

(RFDTM), while Eq. (8) is called inverse of RFDTM. 

Now, let u ( x ), v ( x ) and w ( x ) can be express as u (x ) = ∑ ∞ 

i =0 

∑ ∞ 

j=0 U(i, j) x i +α j , v (x ) = 

∑ ∞ 

i =0 

∑ ∞ 

j=0 V (i, j) x i +α j and w (x ) = ∑ ∞ 

i =0 

∑ ∞ 

j=0 W (i, j) x i +α j respectively, then the fundamental mathe- 

matical operations performed by RFDTM are introduced in the fol- 

lowing theorems. 

Theorem (1). If w (x ) = u (x ) + v (x ) then W (i, j) = U(i, j) + V (i, j) , 

for i ≥ 0 , j ≥ 0 . 

Proof ((1)) . It hold directly. 

Theorem (2). If w (x ) = u (x ) v (x ) then W (i, j) = 

j ∑ 

k =0 

i ∑ 

r=0 

U(r, j − k ) 

V (i − r, k ) for i ≥ 0 , j ≥ 0 . 

Proof ((2)) . 

w (x ) = u (x ) v (x ) 

∞ ∑ 

j=0 

∞ ∑ 

i =0 

W (i, j) x i + α j = 

( 

∞ ∑ 

j=0 

∞ ∑ 

i =0 

U(i, j) x i + α j 

) 

×
( 

∞ ∑ 

j=0 

∞ ∑ 

i =0 

V (i, j) x i + α j 

) 

= 

( 

∞ ∑ 

j=0 

β j x 
α j 

) ( 

∞ ∑ 

j=0 

γ j x 
α j 

) 

where γ j = 

∑ ∞ 

i =0 U(i, j) x i , β j = 

∑ ∞ 

i =0 V (i, j) x i ( 

∞ ∑ 

j=0 

β j x 
α j 

) ( 

∞ ∑ 

j=0 

γ j x 
α j 

) 

= 

∞ ∑ 

j=0 

j ∑ 

k =0 

βk γ j−k x 
α j 

= 

∞ ∑ 

j=0 

ω j x 
α j , ω j = 

j ∑ 

k =0 

βk γ j−k 

ω j = 

j ∑ 

k =0 

( 

∞ ∑ 

i =0 

U(i, k ) x i 

) ( 

∞ ∑ 

i =0 

V (i, j − k ) x i 

) 

= 

j ∑ 

k =0 

∞ ∑ 

i =0 

i ∑ 

r=0 

U(i, k ) V (i − r, j − k ) x i 

= 

∞ ∑ 

i =0 

j ∑ 

k =0 

i ∑ 

r=0 

U(i, k ) V (i − r, j − k ) x i 

∞ ∑ 

j=0 

∞ ∑ 

i =0 

W (i, j) x i + α j = 

∞ ∑ 

j=0 

ω j x 
α j 

= 

∞ ∑ 

j=0 

∞ ∑ 

i =0 

j ∑ 

k =0 

i ∑ 

r=0 

U(i, k ) V (i − r, j − k ) x i + α j , 

By comparing the coefficients of x , one can have 

W (i, j) = 

j ∑ 

k =0 

i ∑ 

r=0 

U(i, k ) V (i − r, j − k ) 

Theorem (3). If v (x ) = x m + αn u (x ) , where m and n are an integer 

number then 

V (i, j) = 0 for i < m or j < n 

V (i, j) = U(i − m, j − n ) for i ≥ m and j ≥ n 

Proof (3). 

v (x ) = x m + αn u (x ) , 

x m + αn u (x ) = 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

U(i, j) x i + m + α j+ αn 

v (x ) = 

m −1 ∑ 

i =0 

n −1 ∑ 

j=0 

V (i, j) x i + α j + 

m −1 ∑ 

i =0 

∞ ∑ 

j= n 
V (i, j) x i + α j 

+ 

∞ ∑ 

i = m 

n −1 ∑ 

j=0 

V (i, j) x i + α j + 

∞ ∑ 

i = m 

∞ ∑ 

j= n 
V (i, j) x i + α j 

= 

m −1 ∑ 

i =0 

n −1 ∑ 

j=0 

V (i, j) x i + α j + 

m −1 ∑ 

i =0 

∞ ∑ 

j= n 
V (i, j) x i + α j 

+ 

∞ ∑ 

i = m 

n −1 ∑ 

j=0 

V (i, j) x i + α j 

+ 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

V (i + m, j + n ) x i + m + α j+ αn 

= 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

U(i, j) x i + m + α j+ αn 
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