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a b s t r a c t 

While local models of dynamical systems have been highly successful in terms of using extensive data 

sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as 

follows. Specifically, with k -near neighbors, kNN method, local observations occur due to recurrences in a 

chaotic system, and this allows for local models to be built by regression to low dimensional polynomial 

approximations of the underlying system estimating a Taylor series. This has been a popular approach, 

particularly in context of scalar data observations which have been represented by time-delay embedding 

methods. However such local models can generally allow for spatial discontinuities of forecasts when 

considered globally, meaning jumps in predictions because the collected near neighbors vary from point 

to point. The source of these discontinuities is generally that the set of near neighbors varies discontin- 

uously with respect to the position of the sample point, and so therefore does the model built from the 

near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the 

same time to impose a degree of regularity on a global scale. We present here a new global perspective 

extending the general local modeling concept. In so doing, then we proceed to show how this perspec- 

tive allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity 

theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an 

objective with some prior assumed form of the result, such as continuity or derivative regularity for ex- 

ample. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the 

implication that it may find much broader context. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction – local models, local forecasting 

Forecasting chaotic dynamical systems, from measured data, is 

a topic that has seen a great deal of activity, at least for the 

last thirty years, facilitated by the time-delay embedding methods. 

In the time-delay embedding literature, forecasting from observed 

states, embedding the states and then fitting local models based 

on regression to the behavior of k -near neighbors (kNN) was put 

forward and somewhat matured by the mid1990s, [4–10] . So, in 

[13] we discuss the role of local models in model selection as it 

relates to spatial scale, and some of that is reviewed here. In par- 

ticular we have been interested in how local modeling [11] , and 

see also [12] , relates to local polynomial models. 

Specifically note that local models are built for the transforma- 

tion based on observing the orbits of near neighbors, and hoping 

that there are a lot of sampled orbit segments due to recurrence 

and a long orbit sample, then in any small neighborhood there 

would be many samples. The “k” in kNN means to collect those 

k points from the data set that are closest to the forecast point. If 
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there is noise, or otherwise, model error, then a degree of smooth- 

ing is implied by a least squares estimation of the local transfor- 

mation. While a higher ordered model will tend to well fit more 

terms in a Taylor polynomial estimation of the local model, there 

are inherently many more parameters to be fitted when using a 

high degree polynomial, and so a much larger k would be required, 

and hence correspondingly the neighborhood would be larger. So 

as discussed in [13] , there is a balancing between fine scale, data 

density, and smoothing when performing local modeling by least 

squares regression alone; here we add to this discussion that regu- 

larity can be emphasized directly by using Tikhonov regularization 

concepts derived from convex optimization theory, [18,19] and also 

found in advanced matrix analysis, [16] , to find locally useful fore- 

casts, which also have good global regularity properties, and with 

less data than perhaps a kNN method on its own. 

When a global model is not be available to forecast evolution of 

a given point, a useful forecast may still be possible by observing 

the evolution of k nearby points using regression to appropriately 

“average” between them. In terms of a polynomial basis, this ap- 

proach develops a least squares regression of the first few terms 

of a Taylor’s series for the unknown global model, in the neigh- 

borhood of the point to be forecast, using the k neighbors as data. 
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Enough near neighbors must be chosen to allow for the minimal 

fitting of the polynomial model, and furthermore, somewhat more 

than the minimal number of points should be chosen to allow for 

some degree of smoothing. This is akin to the familiar statistical 

issues faced when fitting a line to noisy data; more than 2 points 

should be used to confidently specify the line. Scale of the model 

is a major issue: there are competing demands between local trun- 

cation error that push toward small neighborhoods, but smooth- 

ing and confidence push toward larger k , leading to larger neigh- 

borhoods when using finite data sets. This trade-off was the topic 

of [13] . In this paper, we furthermore address an important issue 

overlooked in all previous studies on kNN local modeling, which 

is that if a model is developed for each neighborhood based on 

near neighbors, then since two nearby points may have a different 

set of near neighbors, this leads to lack of smoothness (regular- 

ity) of the forecasts. We address this problem here, by expanding 

our previous work to include regularization by utilizing concepts 

of Tikhonov regularization theory. 

Consider a dynamical system, 

T : M → M, 

y n +1 = T (y n ) . (1.1) 

Let y ∈ M ⊂ R 

d . Assume that from the nonlinear dynamical system, 

we have a large collection of observed iterations as an orbit of Eq. 

(1.1) , { y i } N i =0 
, such that y i +1 = T (y i ) . Here, T will stand for a dis- 

crete time mapping as the transformation, throughout this paper, 

and note that if we have a continuous time process, then the dis- 

crete time mapping may come either by Poincare’ section, or by 

time delay embedding, of a flow. For the modeling discussion be- 

low, these actually need not be a single orbit, but for the regular- 

ity discussion to follow, it is best if we include that assumption 

now. Furthermore assume that there is uniformly enough regular- 

ity of T so that there exists a Taylor’s expansion through order- K , 

which we will exploit in the next Section 2 . The standard discus- 

sion of local modeling is to put forward that these local polynomi- 

als can be estimated by nearby sampled points and their images, 

generally by a regression method. However, we also generally ex- 

pect that these local models will vary continuously, or vary contin- 

uously with respect to higher ordered derivatives of T , with respect 

to variations in the sample point. We will show here that this de- 

sirable and physically expected property can be emphasized with 

Tikhonov regularity theory. 

Now the idea is that for any point w as an initial condition 

that we may wish to forecast but that may not be amongst the 

observed orbit values, w �∈ { y i } N i =0 
, we proceed with local models 

built from first collecting near neighbors to w , amongst the data. 

A standard way to forecast a dynamical system, when presented 

with many previous states, is to collect ‘ ‘k -near” neighbors (kNN) 

in the phase space, and in some manner, average, regress, or oth- 

erwise associate the current forecast to those previous forecasts. 

The simplest version of these associations would be the method of 

analogues [9] from classical weather forecasting, namely forecasts 

are identified with the most same measured state. From [11–13] , 

we review local forecasting in terms of local polynomial models. 

Note that perhaps we may either estimate a discrete time map 

T ( y ) from many observations as just stated, with the hope that 

there is low dimensionality, or a popularly common scenario is 

that we will only observe a single scalar time series, measured 

from a vector valued, y and the time delay embedding represen- 

tation will be used. That is, a time-series from a “chaotic” dynam- 

ical system allows a data-only analysis by embedding attractor re- 

construction, [1,2,4,6,7,10] . Recall that if an autonomous dynamical 

system, 

˙ x = F (x ) , x (t) ∈ R 

n , and x (t 0 ) = x 0 , (1.2) 

has an invariant attractor A then an experimentalist who does not 

know the underlying global model Eq. (1.2) may not even know 

which are the correct variables to measure. Generally, a single-data 

channel can be considered to be a scalar measurement function 

h [ x (t)] : R 

n → R . Given a set of measurements { h [ x (t i )] } N 
i =0 

, with 

uniformly spaced time samples t i , the time-delay embedding is a 

vector, 

y (t) = < h [ x (t)] , h [ x (t − τ )] , h [ x (t − 2 τ )] , . . . , h [ x (t − dτ )] >, 

(1.3) 

and one generally chooses τ to be some multiple of the sam- 

pling rate �t = t i +1 − t i . Takens proved [3] that, for topologically 

generic measurement function h , if the attractor A is a smooth m - 

dimensional manifold, then if one chooses the delay dimension to 

be d ≥ 2 m + 1 , then Eq. (1.3) is an embedding, meaning there ex- 

ists a one-to-one function G : A → R 

d , and G is a diffeomorphism. 

Sauer, et. al [8] proved an extension to allow for nonsmooth A , 

and even fractal A . To reconstruct the attractor, both of these re- 

sults assume that the data is clean, and the data set is arbitrarily 

long. Neither assumption is physically realizable, but nonetheless, 

time-delay reconstruction has found many applications to nonlin- 

ear modeling and to prediction. See [1,2,4,6,9,10] . 

Local linear regression of the observed evolution of k -nearest 

neighbors { y j (t) } k 
j=1 

, to their images { y j (t + τ ) } k 
j=1 

, has emerged 

as the most popular method to predict “the next y ( t ).” The idea is 

that a Taylor’s series of the (unknown) function f τ , which evolves 

(flows) initial conditions y ( t ), according to the differential equation, 

Eq. (1.2) , is well approximated by the linear truncation, if the near 

neighbors are “near enough.” Error analysis, such as that found in 

[10] , is based on this local-truncation error, and therefore considers 

the Luyapunov exponents. There is naturally a conflict of demands 

since on the one hand, a) small local truncation error demands 

that neighborhoods be small, and therefore k must not be chosen 

too large, using a fixed (linear) model, but on the other hand, b) 

statistical fluctuations demand that k be chosen large enough to 

infer a degree of smoothing. The problem we study here is that 

it is well know that those points which are the near neighbors to 

any given sample point may not vary continuously with position in 

space. So the predictions likewise may vary discontinuously. There- 

fore we have developed a perspective here to emphasize that reg- 

ularity is a desirable property. In many ways, this work should be 

considered as analogous to the standard local forecasting, but sim- 

ply an enhanced alternative version. The emphasized regularity of 

forecasts therefore improves plausibility of forecasts in that there 

will be fewer jumps between forecasts of nearby initial conditions 

due simply to the artificial reason that the near neighbors set may 

differ. 

2. Basis for local polynomial regression 

Assuming that the transformation T has enough regularity to 

justify a Taylor polynomial at each point w , to the degree sought. 

For example, a local affine model of T at w, T | w 

is, 

y = T 0 + DT · h, (2.1) 

regressed over k -nearest neighbors of w , { y k j } k j=1 
⊂ { y i } N i =0 

, where 

DT is related to the Jacobian derivative in a neighborhood of w and 

h = w − y . This may be thought of as a local truncation of a Tay- 

lor’s series. We index the k -nearest points to w by k j , ordered k 1 < 

k 2 < .. < k k monotonically with respect to distance from w , assum- 

ing an underlying metric space. For a “good fit,” just as realized by 

any Taylor polynomial, fit is better if h is small. So we would de- 

mand that { y i } N i =0 
“fills” the space adequately so that for any w we 

are likely to select that the k -nearest data points will be “close- 

enough” for a good estimate. A sufficient condition for a long orbit 
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