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a b s t r a c t 

In this paper, we consider a two-degree-of-freedom harmonically forced soft-impacting system. Basic 

types, characteristics and multiformity of periodic-impact motions of the system are achieved through 

multi-parameter simulation analyses which provide the partition of the parameter space into qualitatively 

different regions. The influence of the clearance, constraint stiffness, external force and forcing frequency 

on dynamics of the system is investigated in definite parameter spaces. The results show that the quan- 

tity of impact motions with the forcing period fully depends on the value of the constraint stiffness and 

such period-one multi-impact motions predominantly occur in low frequency and small clearance do- 

main. The experiment is conducted on an electronic circuit designed according to the dynamical model 

of the harmonically forced system with a clearance. The outputs of the designed circuit are well con- 

sistent with the numerical results of the harmonically forced soft-impacting system, which validates the 

experimental approach. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Vibrating systems with clearances are frequently encountered in 

engineering fields. Repeated impacts inevitably occur in such sys- 

tems whenever their components contact the motion limiting con- 

straints or collide with each other, but the phenomena are undesir- 

able as the impacts bring about failures, shorter service life and in- 

creased noise levels. Being an important class of piecewise smooth 

dynamical systems, the studies on dynamics of vibrating systems 

with clearances are relevant to many applications such as chatter- 

impacting problem associated with piping systems and the rattle 

problems caused by demeshing-impact phenomena of multistage 

gear transmission systems or lateral wheel–rail interaction of rail- 

way vehicles. Due to the richness of nonlinear dynamical behaviors 

of mechanical systems with clearances, some people have devoted 

their researches to this subject over the years. A number of analyt- 

ical and numerical studies on vibro-impact dynamics have shown 

that such piecewise smooth systems can exhibit all the standard 

dynamical behaviors which can be found in smooth nonlinear sys- 

tems [1–11] and can also undergo unconventional or unique dy- 
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namical behaviors such as grazing bifurcation [12–26] , sliding bi- 

furcation [27, 28] , border-collision [29] and chattering [30–32] , etc. 

The great interest in experimental research of dynamics of piece- 

wise smooth mechanical systems has been drawn in the past sev- 

eral years, which can be reflected by a still increasing amount of 

research literatures devoted to this aspect. Experimental methods 

for testing dynamical signals of practical systems with clearances 

or stops have been developed and several experimental devices 

modeling the vibro-impact systems have been designed, as partly 

reported in Refs. [33–41] . 

Actually, an experimental approach, based on the electronic cir- 

cuits designed according to dynamical models of mechanical sys- 

tems with clearances or rigid stops, is not only convenient and fea- 

sible, but it is also a low-cost way of verifying dynamic behaviors 

of such systems. The experimental approach can be well carried 

out and dynamical behaviors of the systems can be summarized by 

analyzing the intrinsic qualities of output signals generated by the 

circuits themselves. However, we note that most research works on 

implementation of electric circuits describing nonlinear dynamics 

have focused on Chua’s circuit family [42–48] , Lorenz systems [49–

52] and Duffing oscillators [53, 54] in the past several years. Few 

people have given special consideration for the equivalent elec- 

tronic circuit realization of dynamics of non-smooth mechanical 

systems. Zimmerman, Celaschi and Neto [55] introduced an elec- 
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Fig. 1. Mechanical model of the two-degree-of-freedom harmonically forced system 

with a relative clearance. 

tronic analog of the mechanical bouncing ball by use of an elemen- 

tary circuit composed of three operational amplifiers with feedback 

current from a rectifier. Clark, Martin and Moore et al. [56] stud- 

ied the fractal dimension of strange attractor of an electronic cir- 

cuit modeling of a ball bouncing on an oscillating table, and doped 

out a solution to the problem of identifying periodic and chaotic 

behaviors by calculating the correlation dimension of the system 

from time series data taken from the circuit. Lee [57] presented a 

diode rectifier circuit designed according to dynamic equations of 

a single-degree-of-freedom mechanical oscillator impacting a rigid 

stop. Srinivasan, et al. [58] investigated the effect of non-smooth 

periodic forces like square wave, triangle wave and sawtooth wave 

on a driven Duffing oscillator, which was mimicked by a suitable 

electronic analog circuit using operational amplifiers, Miller inte- 

grators and multipliers. Ho and Nguyen [59] studied a variety of 

nonlinear dynamic responses for an electro-vibro-impact system, 

with indication of chaotic behavior. 

The objectives of the present paper focus on multiformity of 

periodic-impact motions of a harmonically forced soft-impacting 

system and experimental verification based on an electronic cir- 

cuit. The remainder of this paper is organized as follows. Section 

2 introduces the mechanical model of the system and presents two 

Poincaré sections specially defined for the type and feature identi- 

fication of various periodic motions. In Section 3 , the influence of 

parameters (the clearance, constraint stiffness, external force and 

forcing frequency) on dynamics of the system is discussed in def- 

inite parameter spaces. In Section 4 , a circuitry realization of dy- 

namical behaviors of the system is put forward and the experimen- 

tal apparatus is described. In Section 5 , various periodic-impact 

motions of the mechanical model, obtained by numerical analysis, 

are experimentally verified. Last section summarizes and concludes 

this paper. 

2. Mechanical model of a harmonically forced system with a 

relative clearance 

Let us consider the mechanical model reported in Fig. 1 , it is 

a harmonically forced system with the masses M 1 and M 2 , the 

viscous damping coefficients C̄ 1 and C̄ 2 , the spring stiffness coef- 

ficients K 1 and K 2 . The displacements of mass blocks M 1 and M 2 

are represented by X 1 and X 2 , respectively. The mass block M i is 

attached to the supporting base by the spring-damper elements 

K i and C̄ i ( i = 1, 2), and subjected the harmonic force P i sin ( �T + τ ). 

In the external forces, P i denotes the amplitude of harmonic force 

acted on the mass M i , � is the forcing frequency and τ is the 

phase angle. A clearance is put between two mass blocks, which 

can be modeled by a linear damper C̄ 0 , symmetric constraint set 

with stiffness K 0 and gap value 2 B The symmetric constraint set 

means that two constraints of the clearance are symmetrically sit- 

uated in the distances B and –B from the equilibrium position of 

the mass block M 1 . The stiffness K 0 and gap value 2 B determine 

that the symmetric constraint set plays a role of soft stops [2, 3, 20, 

25] . The relative displacement of the system is restricted due to the 

existence of the clearance. As its relative displacement equals the 

gap value B or –B (i.e. | X 1 −X 2 | = B ), the mass M 1 begins to hit the 

constraint. Consequently, non-smooth nonlinearity of motion tra- 

jectory of the system inevitably appears. Correspondingly, dynam- 

ics of the system can be analyzed by a piecewise linear differential 

equation set switched along with the mass block M 1 touching or 

escaping the constraints, which can be explicitly expressed by [
M 1 0 

0 M 2 

]
d 

2 

d T 2 

{
X 1 

X 2 

}
+ 

[
C̄ 1 + C̄ 0 − C̄ 0 

−C̄ 0 C̄ 0 + C̄ 2 

]
d 

d T 

{
X 1 

X 2 

}

+ 

[
K 1 0 

0 K 2 

]{
X 1 

X 2 

}
+ 

{
F 1 ( X 1 , X 2 ) 
F 2 ( X 1 , X 2 ) 

}

= 

{
P 1 
P 2 

}
sin (�T + τ ) (1) 

in which the constraint forces exerted by the constraint spring can 

be written by a piecewise linear function 

F 1 ( X 1 , X 2 ) = 

{ 

K 0 ( X 1 − X 2 − B ) , X 1 − X 2 > B, 

0 , | X 1 − X 2 | ≤ B, 

K 0 ( X 1 − X 2 + B ) , X 1 − X 2 < −B . 

F 2 ( X 1 , X 2 ) = −F 1 ( X 1 , X 2 ) (2) 

As for analyzing dynamics of the system in relatively large pa- 

rameter spaces and making a comparison with the experimental 

results, it is advantageous to introduce dimensionless parameters 

and variables to Eqs. (1) and ( 2 ). The dimensionless variables and 

time are given by 

x i = 

X i K 1 

P 1 + P 2 
, t = T 

√ 

K 1 

M 1 

, i = 1 , 2 . (3) 

Correspondingly, Eq. (1) can be rewritten as [
1 0 

0 

μm 

1 −μm 

]{ 

ẍ 1 

ẍ 2 

} 

+ 

[ 

2 ζ
1 −μc 0 

−2 ζμc 0 

1 −μc 0 −2 ζμc 0 

1 −μc 0 

2 ζ ( 
μc 0 

1 −μc 0 

+ 

μc 2 

1 −μc 2 

) 

] { 

˙ x 1 

˙ x 2 

} 

+ 

[
1 0 

0 

μk 2 

1 −μk 2 

]{ 

x 1 

x 2 

} 

+ 

⎧ ⎨ 

⎩ 

f̄ 1 ( x 1 , x 2 ) 

f̄ 2 ( x 1 , x 2 ) 

⎫ ⎬ 

⎭ 

= 

{ 

1 − f 20 

f 20 

} 

sin (ωt + τ ) (4) 

where the top mark “·” denotes differentiation with respect to the 

dimensionless time t and the constraint forces exerted by the con- 

straint spring are expressed as 

f̄ 1 ( x 1 , x 2 ) = 

μk 0 

1 − μk 0 

( x 1 − x 2 ) − 0 . 5 

μk 0 

1 − μk 0 

( | ( x 1 − x 2 ) + δ| 
−| ( x 1 − x 2 ) − δ| ) , 

f̄ 2 ( x 1 , x 2 ) = − μk 0 

1 − μk 0 

( x 1 − x 2 ) + 0 . 5 

μk 0 

1 − μk 0 

( | ( x 1 − x 2 ) + δ| 
−| ( x 1 − x 2 ) − δ| ) . (5) 

Dimensionless parameters in Eqs. (4) and ( 5 ) are given by 

μm 

= 

M 2 

M 1 + M 2 

, μk j 
= 

K j 

K 1 + K j 

, μc j = 

C̄ j 

C̄ 1 + C̄ j 
, 

ω = �

√ 

M 1 

K 1 

, ζ = 

C̄ 1 

2 

√ 

K 1 M 1 

, δ = 

B K 1 

P 1 + P 2 
, 

f 20 = 

P 2 
P 1 + P 2 

, j = 0 , 2 . (6) 

As the stiffness K 0 of the constraint set between two mass 

blocks varies from zero to infinity, the impact caused by the mass 
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