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a b s t r a c t 

In this paper we prove that for a restricted affine control system on a connected manifold M , the associ- 

ated reachable sets up to the time t varies continuously in each independent variable: time, state and the 

range of the admissible control functions. However, as a global map it is just lower semi-continuous. We 

show a bilinear control system on the plane where the global map has a discontinuity point. According 

to the Pontryagin Maximum Principal, in order to synthesizes the optimal control the Hausdorff metric 

continuity is crucial. We mention some references with concrete applications. Finally, we apply the result 

to the class of Linear control systems on Lie groups. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A control system � = (M, D) is determined by a manifold M 

and a family of differential equations D induced by a class of ad- 

missible control functions. For x ∈ M the accessible set of � from 

x , i.e., the set of points that can be reached from x through all 

possible D-trajectories in positive time, have been investigated in 

several works from different points of view. For instance, a con- 

trol system has the accessibility property from x if the reachable 

set from x , has non-empty interior in the M topology, [25,42] . 

The description of this class of sets have been analyzed by, Darken 

[21] , Gronski [23] , Lobry [34] and Sussmann and Jurdjevic [41] . 

Also, in [30,31] the author makes an effort to describe the struc- 

ture of these sets for special systems on low dimension. Actually, 

the accessible sets are difficult to describe because they are bound- 

ary points that can only be reached by chattering controls, i.e., in- 

finite number of switched of controls in finite time. 

From a particular state x ∈ M , the controllability property of �

means that starting from x it is possible to reach any point of the 
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space state by using the available controls in positive time. In other 

words , the reachable set fromxmust be the wholeM . The study of 

controllability has been a subject of huge interest and has gener- 

ated an enormous activity in research for different classes of con- 

trol system. Specially, on Linear and Bilinear systems on Euclidean 

spaces, [20,24,43] . And Linear and Invariant systems on Lie groups. 

For linear systems we mention [1–9,12–14,16] and [27] . For invari- 

ant we refer to the father of this class of systems [19] , and [38] and 

a complete list of references therein. 

Furthermore, for a restricted admissible class of control U , in 

[20] the authors introduce the notion of control set, a subset C of M 

where controllability holds at the interior int(C) of C and approxi- 

mately controllable at the boundary ∂C of C. Then, they prove that 

the map 

U(ρ) → ρ-control set 

is lower semi-continuous. Here, ρ > 0 is a parameter which allows 

to increase (respect to ⊂ ) the admissible class of control function 

U by increment the range of the controls. See also, [17,36] . 

On the other hand, in his book [35] , Pontryagin shows that for 

a restricted classical linear control system on Euclidean spaces, the 

accessible set up to the positive time t is compact, convex and 

having the form changed continuously on time with the Hausdorff

metric. The Pontryagin Maximum Principal is a very powerful the- 

orem for concrete applications in a broad spectrum of disciplines. 
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For instance, for application in mechanics see [28] , in control of 

rail vehicles [32] , in aerospace systems [33,40] , in economy, [39] , 

etc. 

In our particular case, given an initial condition x and an arbi- 

trary by fix compact and convex subset � of R 

m , the continuity of 

the application 

R x, � : t �→ R ≤t, �(x ) ⊂ M 

is crucial in the proof of the celebrated Lenin Price Pontryagin The- 

orem. Actually, in the classical optimal time for a Linear Control 

System on R 

n , the continuity of R x, � allows to build the optimal 

control. In fact, in this particular case, R ≤t, �(x ) is also convex and 

if t ∗ is the optimal time associated to the optimal control u ∗, then 

the ending point of the optimal curve ϕ( t, x, u ∗), i.e., the point ϕ( t ∗, 

x, u ∗), must belong to the boundary of R ≤t ∗, �(x ) , otherwise is in- 

terior! By applying the Banach Theorem, there exists a hyperplane 

H t ∗ which leave the whole reachable set in one side of H t ∗ . It turns 

out that there exists a covector ηt ∗ orthogonal to H t ∗ such that 

< ηt ∗ , z > ≤ 0 for any z ∈ R ≤t ∗, �(x ) 

and the maximum equals to zero is attainable exactly on the 

boundary point ϕ( t ∗, x, u ∗). By the Bellman Maximum Principle, 

any point of the curve must be optimal. Hence, the existence of a 

1-parameter curve of covectors follows, which is the main ingre- 

dient of the PMP to synthesize the optimal control and solve the 

problem. 

Our work is the first attempt to prove a similar result for the 

class of Linear Control Systems on Lie Groups introduced in [12] . In 

this article we just take care of the Hausdorff continuity part. But, 

for a more general class of systems. In the near future we expect to 

analyze convexity through some notion of geodesic of the system 

and to try to get the same Pontryagin result for linear system on 

Lie groups. 

Precisely, consider a restricted affine control system on a con- 

nected Riemannian C ∞ -manifold M , determined by the family of 

differential equations 

�� : ˙ x (t) = f 0 (x (t)) + 

m ∑ 

i =1 

u i (t) f i (x (t)) , with u ∈ U �. 

Where 

U � = { u ∈ L ∞ (R , R 

m ) ; u (t) ∈ �} 
is the class of restricted admissible control functions with � being 

a compact and convex subset of R 

m with 0 ∈ int ( �). 

If x ∈ M and u ∈ U �, we denote by ϕ( t, x, u ) the ��-solution 

satisfying ϕ(0 , x, u ) = x. The reachable set R ≤t, �(x ) of �� is built 

with the points of M which are possible to reach starting from the 

initial condition x , through all ��-solutions in nonnegative time 

less or equal than t . 

It is well known that the map 

(t, x, u ) ∈ R × M × U � �→ ϕ(t, x, u ) ∈ M 

is continuous. Furthermore, the set U � is a compact metrizable 

space in the weak ∗ topology of L ∞ (R , R 

m ) = L 1 (R , R 

m ) ∗ (see for 

example [29] ). As usual V 

∗ denotes the dual of the vector space 

V . 

In this paper we give a direct proof that for a restricted affine 

control system �� on a connected manifold M , the associated 

reachable sets up to time t varies continuously on each variable 

separately by fixing the others. Precisely, the maps 

t �→ R ≤t, �(x ) , x �→ R ≤t, �(x ) and � �→ R ≤t, �(x ) 

are continuous. 

The variable � belongs to the metric space ( Co (R 

m ) , d H ) 
where 

Co (R 

m ) = { � ⊂ R 

m ; � is a non-empty compact convex subset } 

and d H is the Hausdorff metric. Moreover, ( C(M) , � H ) is the metric 

space of all non-empty compact subsets of M with the Hausdorff

metric. 

As a consequence, every continuous functional J defined on the 

accessible set R ≤t, �(x ) has a minimum and maximum at any con- 

tinuity point ( t, x, �). In fact, J 
(
R ≤t, �(x ) 

)
⊂ R is compact. 

The main theorem of the paper establish that the map 

(t, x, �) ∈ R × M × Co (R 

m ) �→ R ≤t, �(x ) 

is lower semi-continuous. 

Finally, we notice that no preliminary knowledge of control sys- 

tem is required to read the paper. 

2. Control affine systems 

Let M be a connected Riemannian C ∞ -manifold and 

f 0 , f 1 , . . . , f m 

∈ X 

∞ (M) , m + 1 vector fields. 

Definition 1. An affine control system is determined by the family 

of ordinary differential equations 

�� : ˙ x (t) = f 0 (x (t)) + 

m ∑ 

i =1 

u i (t) f i (x (t)) , where u ∈ U �. 

The set of the control functions U � is defined as 

U � = { u ∈ L ∞ (R , R 

m ) ; u (t) ∈ �} 
with � being a compact and convex subset of R 

m . 

It is well known that the set of the control functions is a 

compact metrizable space in the weak ∗ topology of L ∞ (R , R 

m ) = 

L 1 (R , R 

m ) ∗, (see for instance Proposition 1.14 of [29] ). As usual, V 

∗

means the dual of the vector space V . 

For a given initial state x ∈ M and u ∈ U � we denote the solu- 

tion of �� by ϕ( t, x, u ). The curve t �→ ϕ( t, x, u ) is the only solution 

of �� satisfying ϕ(0 , x, u ) = x in the sense of Caratheodóry. That 

is, it is an absolutely continuous curve satisfying the correspond- 

ing integral equation. Throughout the paper we assume that all the 

solutions are defined in the whole real line. Even though this as- 

sumption is in general restrictive, there are several cases where the 

assumption of completeness goes without loss of generality, such 

as the class of linear systems on Lie groups, [15] , and control affine 

systems on compact manifolds, [26] . Moreover, the map 

(t, x, u ) ∈ R × M × U � �→ ϕ(t, x, u ) ∈ M 

is a continuous map (see for instance Theorem 1.1 of [29] ). 

For a given state x ∈ M and a positive time t let us introduce 

the sets 

R ≤t, �(x ) = { y ∈ M; ∃ u ∈ U �, s ∈ [0 , t] with y = ϕ(s, x, u ) } , 
and 

R �(x ) = 

⋃ 

t> 0 

R ≤t, �(x ) . 

R ≤t, �(x ) is called the set of reachable point from x up to time t 

and R �(x ) the set of reachable points from x . 

Our goals include first to prove the partial continuity of the 

map 

(t, x, �) 
R → R ≤t, �(x ) . 

Means, continuity in each variable: time t , state x ∈ M and the 

range � of the admissible class of control U �. Secondly, we prove 

that the global map R is lower semi-continuous. 

First, we notice that it is possible to reduce the proof by con- 

sidering a special class of control. In fact, let us consider the set 

of the piecewise control functions U PC 
�

⊂ U � and define the corre- 

sponding reachable sets as 

R 

PC 
≤t, �(x ) = 

{
y ∈ M; ∃ u ∈ U 

PC 
� , s ∈ [0 , t] with y = ϕ(s, x, u ) 

}
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