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a b s t r a c t 

Traveling wave solutions of the hyperbolic Cahn–Allen equation are obtained using the first integral 

method, which follows from well-known Hilbert–Nullstellensatz theorem. The obtained complete class 

of traveling waves consists of continual and singular solutions. Continual solutions are represented by 

tanh -profiles and singular solutions exhibit unbounded discontinuity at the origin of coordinate system. 

With the neglecting inertia of the dynamical system, the obtained traveling waves include the previous 

solutions for the parabolic Cahn–Allen equation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Cahn–Allen partial differential equation (CA-PDE) was sug- 

gested for the anti-phase boundary motion [1,2] and used in a 

wide spectrum of applications (see Ref. [3] and references therein). 

Being a useful tool within the phase-field models [4] , the CA-PDE 

provides a framework for the mathematical description of free- 

boundary problems. One of important analytical solutions is re- 

lated to traveling wave solutions (see Refs. [5,6] and references 

therein). Nowadays, one of convenient and complete ways in ob- 

taining traveling waves lies in the use of the first integral method 

[7] . This method was introduced for a reliable treatment of the 

non-linear PDEs and over the last decades it has an intense period 

of its applicability [8,9] . This method can be considered as one of 

particular cases of the direct method [10] which generalizes the use 

of equivalent methods in finding exact solutions of PDE reduced 

to ODE [11] . Indeed, to date, several useful methods for obtaining 

solitons and traveling waves were developed. Among them, for in- 

stance, exist the tanh method [12] , G 

′ / G–expansion method [13] , and 

the other powerful method formulated as the rank analytical tech- 

nique [14] applicable to a wide spectrum of nonlinear evolution 

PDEs [15] . To investigate some kinds of specific traveling waves, 

for example, solitary or periodic cusp waves, a phase–plane anal- 

ysis seems to have a strong operability [16] . In the present work, 

we use the first integral method due to its evidence and simple 

applicability to parabolic and hyperbolic types of PDEs with the 

obtaining of complete set of traveling wave solutions [17,18] . 
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Special attention is given to the hyperbolic equations [19–23] , 

especially, to CA-PDE with regard to its application in the field of 

fast phase transitions [23,24] . For the hyperbolic CA-PDE, a travel- 

ing wave solution in a particular form of tanh -function has been 

assumed [25,26] . So far, a general set of exactly obtained travel- 

ing waves for the hyperbolic CA-PDE is absent. Therefore, the main 

purpose of the present work is to find a general set of traveling 

waves in an exact analytical solution of the hyperbolic CA-PDE. 

The hyperbolic equation for the order parameter φ is given by 

[24] 

τR 
∂ 2 φ

∂t 2 
+ 

∂φ

∂t 
= D ∇ 

2 φ − M φ
df (φ) 

dφ
, (1) 

where t is the time, D is the diffusion parameter for the order pa- 

rameter φ, M φ is the mobility of φ and τ R is the relaxation time 

for the gradient flow ∂ φ/ ∂ t . In the damped-wave Eq. (1) the iner- 

tial term τ R ∂ 
2 φ/ ∂t 2 changes the type of the equation from usual 

dissipative parabolic type to the hyperbolic one with the drastic 

exchange of its analytical properties (as it has been shown for par- 

ticular case of CA-PDE [27] ). Physically reasonable applications of 

this equation are in processes with rapidly moving interfaces, in 

comparison with data of atomistic simulations on crystal growth 

kinetics, fast motion by mean curvature under large driving force 

of transformation between non-equilibrium states, inertial dynam- 

ics with dissipation, etc. (see the work [26] and references therein). 

With the free energy density f (φ) = 

1 
4 (φ

2 − 1) 2 , Eq. (1) gives 

τR 
∂ 2 φ

∂t 2 
+ 

∂φ

∂t 
= D ∇ 

2 φ + M φ(φ − φ3 ) , (2) 

which is the hyperbolic CA-PDE. Introducing the dimesionless re- 

laxation time τ = τR M φ, dimensionless coordinate x ∗ = x 
√ 

M φ/D , 
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dimensionless time t ∗ = M φt, and the new coordinate ξ = x ∗ − ct ∗

which moves with the constant velocity, c = const, with the ori- 

gin at φ = 1 / 2 , Eq. (2) transforms to the one-dimensional ordinary 

differential equation (ODE) 

(1 − τ c 2 ) 
d 2 φ

dξ 2 
+ c 

dφ

dξ
+ φ − φ3 = 0 . (3) 

We shall use the first integral method [7] to check the existence of 

tanh -functions in the traveling waves of Eq. (3) . 

2. The first integral method and traveling-wave solutions 

Eq. (3) has the trivial constant solutions: +1 , −1 , and 0. For 

its non-constant solutions, Eq. (3) is considered as non-linear ODE 

of the type of traveling wave solution Q 

(
φ, φ

′ 
, φ

′′ 
, . . . 

)
= 0 , wher e 

the prime denotes the derivative with respect to ξ . The solution 

of this ODE can be written in the form of φi ( x 
∗, t ∗) = F (ξ ) , where 

i = 1 , . . . , m . Now we introduce a new independent variable and its 

derivative as X ( ξ ) = F ( ξ ) and Y ( ξ ) = X 
′ 
( ξ ) , respectively. Accord- 

ing to the first integral method [7] , X ( ξ ) and Y ( ξ ) are non-trivial 

solutions of Eq. (3) : 

dX (ξ ) 

dξ
= Y (ξ ) , (4) 

(1 − τ c 2 ) 
dY (ξ ) 

dξ
= X 

3 ( ξ ) − X ( ξ ) − cY (ξ ) , (5) 

expressed by X ( ξ ) and Y ( ξ ) using the following polynomial 

q [ X (ξ ) , Y (ξ ) ] = 

m ∑ 

i =0 

a i ( X ) Y i = 0 . (6) 

The polynomial (6) is known to be the first integral to Eqs. (4) and 

(5) due to the division theorem 

1 , if we suppose a i ( X ) to be poly- 

nomials of X and a m 

( X ) � = 0. This first integral reduces Eq. (3) to 

a first order integrable ODE, which must have the exact analytical 

solutions. 

In Eq. (6) , we consider X( ξ ) and Y( ξ ) as independent functions 

in the complex domain C ( X, Y ), therefore, dY/dX = 0 . Following the 

division theorem [7,28] , there exists the polynomial g ( X ) + h (X ) Y . 

Then, we shall write 

dq 

dξ
= 

∂q 

∂X 

dX 

dξ
+ 

∂q 

∂Y 

dY 

dξ
= 

∂q 

∂X 

Y + 

∂q 

∂Y 

X 

3 − X − cY 

1 − τ c 2 

= [ g ( X ) + h ( X ) Y ] 
m ∑ 

i =0 

a i (X ) Y i , 

in the complex domain C ( X, Y ). From the latest expressions one 

obtains 

∂q 

∂X 

= 

m ∑ 

i =0 

da i 
dX 

Y i + 

m ∑ 

i =0 

ia i Y 
i −1 ∂Y 

∂X 

= 

m ∑ 

i =0 

da i 
dX 

Y i , (7) 

where the coefficients a i for the solution (6) are 

2 ∑ 

i =0 

da i 
dX 

Y i +1 + 

2 ∑ 

i =0 

ia i Y 
i −1 X 

3 − X − cY 

1 − τ c 2 

= g ( X ) 

2 ∑ 

i =0 

a i ( X ) Y i + h ( X ) Y 
2 ∑ 

i =0 

a i ( X ) Y i . (8) 

A number of terms in Eqs. (7) and (8) are chosen as m = 2 to 

reach the required polynomial degree with the correct number 

1 The division theorem“ has been formulated in Ref. [7] . as a particular case 

of the Hilbert–Nullstellensatz theorem about characterization of maximal ideals in 

polynomial rings [28] . 

of terms in determining the resulting number of unknown coeffi- 

cients. Then, using the detailed form of Eq. (8) and having equating 

the coefficients at Y i ( i = 0 , 1 , 2 , 3 ) , one gets 

Y 3 : ˙ a 2 ( X ) = h ( X ) a 2 ( X ) , (9) 

Y 2 : ˙ a 1 ( X ) = 2 a 2 ( X ) 
c 

1 − τ c 2 
+ g ( X ) a 2 ( X ) + h (X ) a 1 ( X ) , (10) 

Y 1 : ˙ a 0 ( X ) = 2 a 2 ( X ) 
X − X 

3 

1 − τ c 2 
+ a 1 ( X ) 

c 

1 − τ c 2 

+ g ( X ) a 1 ( X ) + h ( X ) a 0 ( X ) , (11) 

Y 0 : a 1 ( X ) 
X 

3 − X 

1 − τ c 2 
= g(X ) a 0 ( X ) , (12) 

where the point means the derivative d / dX . Since a i ( X ) are poly- 

nomials, from Eq. (9) it follows that a 2 ( X ) ≡ const and h (X ) = 0 . 

Then, accepting the value a 2 ( X ) = 1 , Eqs. (9) –(12) are 

a 2 ( X ) = 1 , (13) 

˙ a 1 ( X ) = 2 

c 

1 − τ c 2 
+ g ( X ) , (14) 

˙ a 0 ( X ) = a 1 ( X ) 
c 

1 − τ c 2 
− 2 

X 

3 − X 

1 − τ c 2 
+ g ( X ) a 1 ( X ) , (15) 

a 1 ( X ) 
X 

3 − X 

1 − τ c 2 
= g(X ) a 0 ( X ) . (16) 

Thus, we have found the expressions for the coefficients a i ( X ) from 

Eq. (6) . 

In searching for solutions of Eq. (3) , we assume the condition 

1 − τ c 2 > 0 which physically means that the interface velocity c 

cannot overcome and be larger than the maximum speed of dis- 

turbance propagation in the field of order parameter φ [24,25] . 

Such condition shrinks the set of all possible solutions (real and 

imaginary) to the class of real solutions. Solutions of Eq. (3) will 

be found for two possible cases: deg [ g(X )] = 0 and deg [ g(X )] = 1 

which directly follow from Eqs. (8) –(12) , see Appendix A . 

2.1. Case 0 

Minding deg [ g(X )] = 0 for Eqs. (13) –(16) , one obtains g ( X ) = A 1 

and a 1 ( X ) = 2 cX/ (1 − τ c 2 ) + A 1 X + A 0 . With these expressions, the 

integral of Eq. (15) is 

a 0 ( X ) = − X 

4 

2(1 − τ c 2 ) 
+ 

X 

2 

1 − τ c 2 

(
1 + 

c 2 

1 − τ c 2 

+ 

3 

2 

A 1 c + 

1 − τ c 2 

2 

A 

2 
1 

)
+ X 

(
A 0 c 

1 − τ c 2 
+ A 0 A 1 

)
+ d, (17) 

where d is the constant of integration. 

Substituting a 0 ( X ) from Eq. (17) into Eq. (8) , multiplying the re- 

sult by (1 − τ c 2 ) 
2 

and having equating to zero the coefficients for 

different degrees of X , one gets 

X 

4 : 2 c + 

3 

2 

A 1 

(
1 − τ c 2 

)
= 0 , (18) 

X 

3 : A 0 

(
1 − τ c 2 

)
= 0 , (19) 

X 

2 : 2 c + 2 A 1 

(
1 − τ c 2 

)
+ A 1 c 

2 + 

3 

2 

A 

2 
1 c 

(
1 − τ c 2 

)
+ 

1 

2 

(
1 − τ c 2 

)2 
A 

3 
1 = 0 , (20) 
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