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a b s t r a c t 

We study the periodic solutions of the third-order differential equations of the form 

... 
x ± x n = μ f (t) , or 

... 
x ± | x | n = μ f (t) , where n = 2 , 3 , . . . , f (t) is a continuous T − periodic function such that 

∫ T 
0 f (t) dt � = 0 , 

and μ is a positive small parameter. Note that the differential equations 
... 
x ± x n = μ f (t) are only contin- 

uous in t and smooth in x , and that the differential equations 
... 
x ± | x | n = μ f (t) are only continuous in t 

and locally-Lipschitz in x . We also study the stability of the periodic solutions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The periodic solutions of the second-order differential equa- 

tions 

ẍ + x 3 = f (t) , 

where f ( t ) is a T-periodic function have been studied by several 

authors. Mainly these authors study when an equilibrium or a 

periodic orbit of an autonomous differential system, as the system 

ẍ + x 3 = 0 , can be continued as a periodic solution when the 

autonomous system is periodically perturbed, see for instance 

the papers [5,6,9,10] . The main tool used by these authors for 

obtaining their results is the Brouwer degree theory. 

The objective of this paper is to extend the mentioned results 

in two new directions: 

• First instead of working with second-order differential 

equations we shall work with third-order differential equations. 

• Second instead of working with the particular autonomous 

system 

... 
x + x 3 = 0 we shall work with the autonomous systems 

... 
x ± x n = 0 or 

... 
x ± | x | n = 0 for all 

n ≥ 2. 

If f ( t ) is a T-periodic function, then we shall study the pe- 

riodic orbits and their kind of stability of the non-autonomous 
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third-order differential equations 
... 
x ± x n = μ f (t) , (1) 

which are only continuous in t and smooth in x , and also we 

shall study the periodic orbits and their kind of stability of the 

differential equations 
... 
x ± | x | n = μ f (t) , (2) 

which are only continuous in t and locally-Lipschitz in x . 

We remark that almost there are no previous works studying 

periodic orbits of differential systems which are only locally- 

Lipschitz, see for instance [7] . 

2. Statement of the main results 

Our main results are the following four theorems. 

Theorem 1. Consider the third-order differential equation 
... 
x + x n = μ f (t) , (3) 

where n = 2 , 3 , . . . , f (t) is continuous, T periodic function such that, ∫ T 
0 f (t) dt � = 0 and μ > 0 is a small parameter. 

For n even, 
∫ T 

0 f (t) dt > 0 and μ > 0 suffciently small there exist 

two unstable periodic solutions x + (t, μ) and x −(t, μ) of period T of 

the differential Eq. (3) such that 

x + (0 , μ) = μ
1 
n 

(
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) 
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and 

x −(0 , μ) = −μ
1 
n 

(
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

For n odd, there exists only one unstable periodic solution x ( t, μ) of 

period T of the differential Eq. (3) such that 

x (0 , μ) = μ
1 
n 

(
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

Theorem 1 is proved in Section 2 . 

Theorem 2. Consider the third-order differential equation 

... 
x − x n = μ f (t) , (4) 

where n = 2 , 3 , . . . , f (t) is continuous, T periodic function such that, ∫ T 
0 f (t) dt � = 0 and μ > 0 is a small parameter. 

For n even, 
∫ T 

0 f (t) dt < 0 and μ > 0 suffciently small there exist 

two unstable periodic solutions x + (t, μ) and x −(t, μ) of period T of 

the differential Eq. (4) such that 

x + (0 , μ) = μ
1 
n 

(
− 1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) 

and 

x −(0 , μ) = −μ
1 
n 

(
− 1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

For n odd, there exists only one unstable periodic solution x ( t, μ) of 

period T of the differential Eq. (4) such that 

x (0 , μ) = μ
1 
n 

(
− 1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

Theorem 3. Consider the third-order differential equation 

... 
x + | x | n = μ f (t) , (5) 

where n = 2 , 3 , . . . , f (t) is continuous, T periodic function such that, ∫ T 
0 f (t) dt � = 0 and μ > 0 is a small parameter. For n ≥ 2, 

∫ T 
0 f (t) dt > 

0 and μ > 0 suffciently small there exist two unstable periodic solu- 

tions x + (t, μ) and x −(t, μ) of period T of the differential Eq. (5) such 

that 

x + (0 , μ) = μ
1 
n 

(
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) 

and 

x −(0 , μ) = −μ
1 
n 

(
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

Theorem 3 is proved in Section 2 . 

Theorem 4. Consider the third-order differential equation 

... 
x − | x | n = μ f (t) , (6) 

where n = 2 , 3 , . . . , f (t) is continuous, T periodic function such that, ∫ T 
0 f (t) dt � = 0 and μ > 0 is a small parameter. For n ≥ 2, 

∫ T 
0 f (t) dt < 

0 and μ > 0 suffciently small there exist two unstable periodic solu- 

tions x + (t, μ) and x −(t, μ) of period T of the differential Eq. (6) such 

that 

x + (0 , μ) = μ
1 
n 

(
− 1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) 

and 

x −(0 , μ) = −μ
1 
n 

(
− 1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

+ O (μ
(n +2) 

3 n ) . 

The following two corollaries follow easily from the previous four 

theorems. 

Corollary 1. (a) For μ > 0 sufficiently small the equation 
... 
x + 

x 2 = μ( sin 

3 t + 1) has two unstable periodic solutions x + (t, μ) and 

x −(t, μ) such that 

x + (0 , μ) = 

√ 

μ + O (μ
2 
3 ) and x −(0 , μ) = −√ 

μ + O (μ
2 
3 ) . 

(b) For μ > 0 sufficiently small the equation 
... 
x − x 3 = μ cos 2 t has 

only one unstable periodic solution x ( t, μ) such that 

x (0 , μ) = 

3 
√ 

−μ/ 2 + O (μ
5 
9 ) . 

Corollary 2. (c) For μ > 0 sufficiently small the equation 
... 
x + | x | 6 = 

μ cos 2 t has two unstable periodic solutions x + (t, μ) and x −(t, μ) 

such that 

x + (0 , μ) = 

6 
√ 

μ/ 2 + O (μ
4 
9 ) and x −(0 , μ) = − 6 

√ 

μ/ 2 + O (μ
4 
9 ) . 

(d) For μ > 0 sufficiently small the equation 
... 
x − | x | 5 = −μ sin 

2 t

has two unstable periodic solutions x + (t, μ) and x −(t, μ) such that 

x + (0 , μ) = 

5 
√ 

μ/ 2 + O (μ
7 

15 ) and x −(0 , μ) = − 5 
√ 

μ/ 2 + O (μ
7 

15 ) . 

3. Proof of the results 

In this section we shall prove Theorems 1 –4 and Corollaries 

1 and 2 . 

Proof of Theorem 1. Under the assumptions of Theorem 1 we 

write the third-order differential equation as the differential sys- 

tem of first order 

˙ x = y, 

˙ y = z, 

˙ z = −x n + μ f (t) . (7) 

Doing the change of variables 

x = ε 3 / (n −1) X, y = ε (n +2) / (n −1) Y, 

z = ε (2 n +1) / (n −1) Z, μ = ε 3 n/ (n −1) , (8) 

with ε > 0, the differential system (7) becomes 

˙ X = εY, 

˙ Y = εZ, 

˙ Z = ε(−X 

n + f (t)) . (9) 

We note that the change of variables (8) is well defined be- 

cause n > 1. Now we apply the averaging theory of first order 

of the appendix. Using the notation of Theorem 5 of the ap- 

pendix system (9) can be written as system (18) with x = (X, Y, Z) , 

H = (Y, Z, −X n + f (t)) , and R = (0 , 0 , 0) . The averaged function h ( z ) 

given in (19) for system (9) becomes 

h (X, Y, Z) = 

(
Y, Z, −X 

n + 

1 

T 

∫ T 

0 

f (t ) dt 

)
. (10) 

If n is even and 

∫ T 
0 f (t) dt > 0 then the function h ( X, Y, Z ) has two 

unique zeros 

(X 

∗
+ , Y 

∗
+ , Z 

∗
+ ) = 

( (
1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

, 0 , 0 

) 

and 

(X 

∗
−, Y ∗−, Z ∗−) = 

( 

−
(

1 

T 

∫ T 

0 

f (t ) dt 

) 1 
n 

, 0 , 0 

) 

. 

The Jacobian of the function h ( X, Y, Z ) at the zero (X ∗+ , Y ∗+ , Z ∗+ ) 
is −nX ∗(n −1) 

+ < 0 . By Theorem 5 and Remark 2 we deduce that 
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