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a b s t r a c t 

Network with interacting loops and time delays are common in physiological systems. In the past few 

years, the dynamic behaviors of coupled interacting loops neural networks have been widely studied due 

to their extensive applications in classification of pattern recognition, signal processing, image process- 

ing, engineering optimization and animal locomotion, and other areas, see the references therein. In a 

large amount of applications, complex signals often occur and the complex-valued recurrent neural net- 

works are preferable. In this paper, we study a complex value Hopfield-type network that consists of a 

pair of one-way rings each with four neurons and two-way coupling between each ring. We discuss the 

spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of 

delay differential equations combined with representation theory of Lie groups. The existence of multiple 

branches of bifurcating periodic solution is obtained. We also found that the spatio-temporal patterns 

of bifurcating periodic oscillations alternate according to the change of the propagation time delay in the 

coupling, i.e., different ranges of delays correspond to different patterns of neural network oscillators. The 

oscillations of corresponding neurons in the two loops can be in phase or anti-phase depending on the 

parameters and delay. Some numerical simulations support our analysis results. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Neural network which is composed of complex-valued neu- 

rons is extensively studied in the various fields [1–3] . Gener- 

ally, complex-valued neural networks have different and more 

complicated properties than real-valued neural networks. Usually, 

complex-valued neural networks make it possible to solve some 

problems which cannot be solved with their real-valued counter- 

parts. For example, the XOR problem and the detection of symme- 

try problem cannot be solved with a single real-valued neuron, but 

they can be solved with a single complex-valued neuron with the 

orthogonal decision boundaries, which reveals the potent compu- 

tational power of complex-valued neurons [4] . Thus, it is important 

to investigate the dynamical behaviors of complex-valued recur- 

rent neural networks. Recently, many properties of complex valued 

neural network models have been studied, such as exponential sta- 

bility of the equilibrium point, Hopf bifurcation, global asymptotic 

stability, boundedness and complete stability and so on. See [5–9] . 
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Time delays have been incorporated into neural network mod- 

els by many authors, since it occurs in signal transmissions in the 

electronic implementation of neural networks, which may influ- 

ence the dynamical behaviors such as oscillation, bifurcation and 

instability. From the mathematical point of view, the presence of 

delays makes the problem harder to handle. In fact, the state vec- 

tor characterizing a nonlinear delayed system evolves in an infinite 

dimensional functional space [10,11] . 

The theory of spatio-temporal pattern formation in systems of 

coupled non-linear oscillators with symmetry has grown exten- 

sively in recent years. There are many phenomena which can be 

modeled as symmetric systems of non-linear coupled oscillators 

and are examples of symmetry-breaking bifurcation. These systems 

often can described by a network of units called cells (oscillators) 

and can display many different kinds of dynamics [12,13] . For the 

symmetrical dynamical system described by ordinary differential 

equations, Golubisky et al. provides the symmetrical (equivariant) 

bifurcation theory. 

A coupled oscillator network has discrete spatial structure but 

continuous temporal structure be modeled as a structured sys- 

tem with properties such as geometry and symmetry. Its impact 

has been felt in a wide variety of fields of applied science. An 
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Fig. 1. The architecture of the model (1.1) . 

important related example in biology is ”animal locomotion”, see 

[14–18] . 

In this paper, a complex value delayed neuron Hopfield neural 

networks with a ring topology consists of two coupling unidirec- 

tional rings, each with four oscillators are given. In this model, the 

states, connection weights and activation functions of the complex- 

valued neural networks are all complex-valued. The model has 

symmetric group � = Z 4 × Z 2 , that means the global symmetry Z 2 
and internal symmetry Z 4 . See Fig. 1 . 

The case leads to the following system of delay differential 

equations: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ z 1 (t) = (a + i b) z 1 (t) + (c + i d) f (z 2 (t)) + (m + i n ) f (w 1 (t − τ )) , 
˙ z 2 (t) = (a + i b) z 2 (t) + (c + i d) f (z 3 (t)) + (m + i n ) f (w 2 (t − τ )) , 
˙ z 3 (t) = (a + i b) z 3 (t) + (c + i d) f (z 4 (t)) + (m + i n ) f (w 3 (t − τ )) , 
˙ z 4 (t) = (a + i b) z 4 (t) + (c + i d) f (z 1 (t)) + (m + i n ) f (w 4 (t − τ )) , 
˙ w 1 (t) = (a + i b) w 1 (t) + (c + i d) f (w 2 (t)) + (m + i n ) f (z 1 (t − τ )) , 
˙ w 2 (t) = (a + i b) w 2 (t) + (c + i d) f (w 3 (t)) + (m + i n ) f (z 2 (t − τ )) , 
˙ w 3 (t) = (a + i b) w 3 (t) + (c + i d) f (w 4 (t)) + (m + i n ) f (z 3 (t − τ )) , 
˙ w 4 (t) = (a + i b) w 4 (t) + (c + i d) f (w 1 (t)) + (m + i n ) f (z 4 (t − τ )) , 

(1.1) 

where τ ≥ 0 is the time delay and the coefficients a , b , c , d , m , n 

are all real values. Activation function f (z) = ( tanh (x ) + tanh (y )) + 

i( tanh (x ) + tanh (y )) ( z = x + i y )is common to all neurons. 

The general theory of Hopf bifurcation applied to systems of 

symmetrically coupled identical oscillators was developed by many 

mathematicians, chief among whom were M. Golubitsky and I. 

Stewart [19] . Recently, the works of addressed the effects of both 

internal and global symmetries are analyzed to determine exactly 

what kind of solutions are possible [20,21] . In the next section 

we focus on the linear stability analysis of the trivial equilibrium. 

This then leads us to a discussion of the bifurcations of the triv- 

ial equilibrium. We consider the coupled system’s dynamics near 

a multiple Hopf bifurcation. We show that the structure of sys- 

tem (1.1) can be represented by a group Z 4 × Z 2 . There is a fully 

symmetric solution that loses stability as a parameter varies, and 

this loss of stability is due to the crossing of imaginary eigenvalues 

through the imaginary axis and the Hopf bifurcation to periodic 

solutions appears. In Section 3 , we also obtain some important re- 

sults about the spontaneous bifurcations of multiple branches of 

periodic solutions: though the system (1.1) has the global symme- 

try Z 2 and internal symmetry Z 4 , there are several kinds spatio- 

temporal patterns which can characterize the coordination be- 

tween the neurons in two rings during cyclic movements. Numer- 

ical simulations is given in Section 4 . In Section 5 , we also point 

out that the theoretical results obtained can be applied to prac- 

tical systems with Z 2 × Z 4 symmetry, such as CPG model of a 

quadrupedal locomotor. 

2. Elementary analysis 

In order to investigate the dynamic behavior of the complex- 

valued neurons, it is more convenient to work with the equations 

in a real form. This can be done by introducing 

z j (t) = x j (t) + i y j (t) w j (t) = u j (t) + i v j (t) be a solution of (1.1) . 

By taking the real and imaginary parts, we have ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x j (t) = ax j (t) − by j (t) + cx j+1 (t) − dy j+1 (t) 

+ mu j (t − τ ) − n v j (t − τ ) 
+ 

c 
3! 

[(x 3 
j+1 

(t) − 3 x 2 
j+1 

(t) y j+1 (t))] 

+ 

d 
3! 

[(y 3 
j+1 

(t) − 3 x j+1 (t) y 2 
j+1 

(t))] 

+ 

m 

3! 
[(u 

3 
j 
(t − τ ) − 3 u 

2 
j 
(t − τ ) v j (t − τ ))] 

+ 

n 
3! 

[(v 3 
j 
(t − τ ) − 3 u j (t − τ ) v 2 

j 
(t − τ ))] , 

˙ y j (t) = bx j (t) + ay j (t) + dx j+1 (t) + cy j+1 (t) 

+ nu j (t − τ ) + m v j (t − τ ) 

+ 

d 
3! 

[(x 3 
j+1 

(t) − 3 x 2 
j+1 

(t) y j+1 (t))] 

− c 
3! 

[(y 3 
j+1 

(t) − 3 x j+1 (t) y 2 
j+1 

(t))] 

+ 

n 
3! 

[(u 

3 
j 
(t − τ ) − 3 u 

2 
j 
(t − τ ) v j (t − τ ))] 

− m 

3! 
[(v 3 

j 
(t − τ ) − 3 u j (t − τ ) v 2 

j 
(t − τ ))] , 

˙ u j (t) = au j (t) − bv j (t) + cu j+1 (t) − dv j+1 (t) 

+ mx j (t − τ ) − ny j (t − τ ) 

+ 

c 
3! 

[(u 

3 
j+1 

(t) − 3 u 

2 
j+1 

(t) v j+1 (t))] 

+ 

d 
3! 

[(v 3 
j+1 

(t) − 3 u j+1 (t) v 2 
j+1 

(t))] 
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m 

3! 
[(x 3 

j 
(t − τ ) − 3 x 2 

j 
(t − τ ) y j (t − τ ))] 

+ 

n 
3! 

[(y 3 
j 
(t − τ ) − 3 x j (t − τ ) y 2 

j 
(t − τ ))] , 

˙ v j (t) = bu j (t) + a v j (t) + du j+1 (t) + cv j+1 (t) 

+ nx j (t − τ ) + my j (t − τ ) 

+ 

d 
3! 

[(u 

3 
j+1 

(t) − 3 u 

2 
j+1 

(t) v j+1 (t))] 

− c 
3! 

[(v 3 
j+1 

(t) − 3 u j+1 (t) v 2 
j+1 

(t))] 

+ 

n 
3! 

[(x 3 
j 
(t − τ ) − 3 x 2 

j 
(t − τ ) y j (t − τ ))] 

− m 

3! 
[(y 3 

j 
(t − τ ) − 3 x j (t − τ ) y 2 

j 
(t − τ ))] , 

j = 1 , 2 , 3 , 4 . 

(2.1) 

This shows that Eq. (1.1) is equivalent to Eq. (2.1) . Clearly, 

Eq. (2.1) is a real differential equation with a delay. 

It is clear that (x j , y j , u j , v j ) = (0 , 0 , 0 , 0)( j = 1 , 2 , 3 , 4) is an 

equilibrium point of Eq. (2.1) . The linearization of Eq. (2.1) at the 

origin leads to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x j (t) = ax j (t) − by j (t) + cx j+1 (t) − dy j+1 (t) 

+ mu j (t − τ ) − n v j (t − τ ) , 

˙ y j (t) = bx j (t) + ay j (t) + dx j+1 (t) + cy j+1 (t) 

+ nu j (t − τ ) + m v j (t − τ ) , 

˙ u j (t) = au j (t) − bv j (t) + cu j+1 (t) − dv j+1 (t) 

+ mx j (t − τ ) − ny j (t − τ ) , 
˙ v j (t) = bu j (t) + a v j (t) + du j+1 (t) + cv j+1 (t) 

+ nx j (t − τ ) + my j (t − τ ) , 

j = 1 , 2 , 3 , 4 . 

(2.2) 

Let C([ −τ, 0] , R 

16 ) denote the Banach space of continuous map- 

ping from [ −τ, 0] into R 

16 equipped with the supremum norm 

‖ ϕ ‖ = sup 

−τ≤θ≤0 

| ϕ(θ ) | for ϕ ∈ C([ −τ, 0] , R 

16 ) . Let σ ∈ R, A ≥ 0, 
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