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In 1987, Elton [11], has proved the first fundamental result on the convergence of IFS, the Elton’s Er-
godic Theorem. In this work we prove the natural extension of this theorem to the projected Hutchinson
measure i, associated to a GIFSpdp S = (X, (¢j: X™ — X)j=0>1 _____ n1 (pj)j:[,.]_,mn,l), in a compact metric
space (X, d). More precisely, the average along of the trajectories x,(a) of the GIFS, starting in any initial
points X, ..., Xn_1 € X satisfies, for any f € C(X, R),
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for almost all ae Q ={0,1,...,n—1}", the symbolic space. Additionally, we give some examples and
applications to Chaos Games and Nonautonomous Dynamical Systems defined by finite difference equa-
tions.
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Introduction

In 2008, Mihail and Miculescu [17], has introduced the Gener-
alized Iterated Function Systems (GIFS, for short). They prove that
there exists a fractal attractor and give estimates for the rate of
convergence for contractive GIFS. In 2009, Mihail [16], has consid-
ered the Hutchinson measure associated to a GIFS with place de-
pendent probabilities (GIFSpdp for short) that generalizes the clas-
sical Hutchinson measure, the invariant measure, associated to an
Iterated Function System (IFS for short).

In this work, the central idea is to extend the GIFS to an IFS in
a bigger space, that we call Extended GIFS. For this IFS we obtain
an Extended Hutchinson measure. We also set up the properties of
the extended Hutchinson measure and its relation with the original
GIFS.

Using the extension, we prove an ergodic theorem that extends
the classic Elton’s ergodic theorem for IFS (Elton [11]) to the pro-
jected Hutchinson measure associated to a GIFS. From our results,
we prove a Chaos game theorem for GIFS. As an application, we
obtain some results on the stability and the asymptotic behav-
ior of nonautonomous dynamical systems defined by finite differ-
ence equations. Also, we show how to recover properties of Gibbs
measures for Holder potentials through an appropriate GIFS that is
built from an expansive endomorphism.
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The paper has three sections. In the Section 2, we recall the
basic facts about GIFS and GIFSpdp, that we will use in the rest of
the paper. In the Section 3, we introduce the extension of a GIFS
and prove the Ergodic Theorem (Theorem 23). Section 4, is devoted
to applications. The main goal here is to prove the Chaos Game
Theorem (Theorem 25), allowing us to draw the attractor of the
extended GIFS and his projection.

We believe that our results and technics will be useful for forth-
coming works and for other researchers in this area. The ergodic
theorem we prove and his consequences, provides a useful tool on
the understanding of GIFS.

1. Motivation

A well known example of Discrete Nonautonomous Dynamical
System (see Potzsche [18]) is the dynamics generated by a finite
difference equation(FDE), defined by a nonautonomous recurrence
relation of order m > 2, nominally

Xj+m = f(xj+m—1sxj+m—2: o vxjﬂ a)])v .] = O’

where @p, w1, ... € I. The control sequence (@j)jg 1, . represents
some seasonal interference acting on each iteration by changing
the standard recursiveness on a FDE. It can be modeled by a GIFS
S = X", (¢j)j=0.n_1) Where ¢;: X™ — X is given by

& V0. Y1, - Ym-1) = fY0. Y1, -2 Ym-1, ©)).

The control set I could be finite or not. In this case, the orbit of the
GIFS from the point (cg, ..., Cp_2,Cm_1) is equal to the orbit of the
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FDE with initial conditions:

Xjipm = fXjpm-1. Xjym=2. .- .. Xj, Wj), @ € I
X0 = Co

Xm-1, = Cm-1

If the associated GIFS satisfy the hypothesis E1 and E2, that we
define in the next, we can apply our theory to study the asymp-
totic behavior and the limit sets of these nonautonomous dynami-
cal systems.

2. Background on GIFS and GIFSpdp

In this section, we will recall the basic definitions and results
on the theory of GIFS. See Miculescu [15], for more details and the
notation. We notice that the word “generalized” has been used in
several different ways representing more general components of a
classical IFS. Here, generalized, means that functions are from X™
to X instead X to X.

2.1. Generalized iteration function system (GIFS)

Let (X, d) be a compact! metric space (typically X =[0,1], X =
{0,1,..., d—1}N, X =[0,1]Y, etc). Consider the topology on X™
given by
oo (1. X2, .. Xm), (V1.¥2. - Ym)) = MaX d(X;. yy),

1,...m
then (X™, d) is also a compact metric space.

Definition 1. A (continuous) generalized iterated function system
(GIES) of degree m is a (finite) family S of continuous functions
¢j: X™ — X, denoted by S = (X, (¢}) j—0..n-1)-

See Secelean [19,20] for the analogous theory for countable
GIFS. In order to avoid technicalities we assume that m=n=2
that is, two maps in X2 (see Remark 6 for additional details). So
the standard GIFS is S = (X, (¢])j=0,1) where ¢g, ¢1: X2—X. We

recall that,

Lip(X?,X) = {f | d(f(X0.¥0). f(X1.¥1))
< Cd((x0,¥0), (x1,¥1)), C:=Lip(f)}

and

Lipcp(X2.X) = {f | d(f(X0.¥0). f(x1.¥1))
< Cd(Xo,X]) +Dd(y(),y1), C,D > 0}

From now on we will assume the contraction hypothesis:

E1 - Each ¢;: X2 — X is in Lipcj,Dj(Xz,X) and C;+D; < 1. In
particular, all the ¢; are Lipschitz contractions and Lip(¢;) =C; +
D:

I

As usual, we denote K(X) c P(X) = 2X, the family of compact

subsets of X. Moreover, £*(X) = K(X) \ {2}.

Definition 2. Given f; X2 — X we define the associated set
function Fy : P* X)2 > P*(X) by Fr (K1, K2) = f(Ky x K). Also, we
define the function Fs:K*(X)? — K*(X) associated to S by
Fs(K1.K2) = Ujo01 F¢j (K1,Ky). A set Y € X is self-similar(or frac-
tal) with respect to S if Fs(Y,Y) =Y.

The map Fs is sometimes called, Fractal operator, Barnsley’s
Function or Hutchinson’s operator, in the literature. From Mihail
and Miculescu [17], Theorem 3.5, we know that under the hy-
pothesis E1, there exists a unique attractor A(S) € K*(X) for the

1 We assume compactness to avoid technicalities. Many of the results that we
present here are true if (X, d) is just complete. It is sufficient because the measures
we use are always supported in the attractors that are compact sets.

GIFS that depends continuously on ¢;. That is, A(S) is self-similar
(Fs(A(S),A(S)) =A(S)) and, for any Hy, H; € K*(X) the recursive
sequence of compact subsets Hj., = Fs(Hj;1, Hj), converges to
A(S) with respect to the Hausdorff metric: A(S) = lim;_, , H;.

The natural question to make about GIFS is if they of-
fer some new fractals. The positive answer is given by Mihail
and Miculescu [17] through examples and in the recent work
Strobin [22] for a more general case. We will discuss that, in the
end of the Section 3.1. We should mention that recently, in 2015,
Dumitru et al. [9] they consider many questions regarding to the
extension of the concept of GIFS for topological contractions as-
suming that the family of maps is not just finite or countable
but possibly an arbitrary family 7 of maps from X™ to X, satisfy-
ing suitable hypothesis. Several results are obtained by using code
spaces (see [21] for details).

2.2. GIFS with place dependent probabilities (GIFSpdp)

In this section, we use the notation in Miculescu [15]. The set
Prob(X) will always be the set of regular Borel probabilities on X
with respect to the Borel sigma algebra induced by the metric.

Definition 3. A generalized iteration function system with place
dependent probabilities (GIFSpdp) is a family S of continu-
ous functions ¢;: X2 — X, and weight functions (probabilities)
p;: X? — [0, 1] such that py(x,y) + p1(x,y) =1, denoted S =
X, (@) j=0.1, (Pj)j=0.1)-

One special case is when the probabilities are given by
a potential function u:X — R, then p;(x.y)=u(¢;(x,y)) and
u(¢o(x,y)) +u(¢1(x,y)) = 1. We denote such case as a uniform
GIFSpdp according to Lopes and Oliveira [13]. We consider an ap-
plication of this after Theorem 28.

E2 - For a GIFSpdp we assume two hypothesis on the weights:

a) pilx, y) =8 >0, foranyi=0,1, x,y € X;
b) pi(x, y) is in Lipc,-,d,- (X2,[0,1]) with ¢;+d; < 1.

We recall that p;(x, y) is Dini continuous if fog %dt < oo for
some & > 0, where Q; is the modulus of continuity of p;, |p;(x,y) —
pi(®. ¥ < Qi(d((x.y). ¥.y"))). V(x.y) # ('.y"). For instance if
p; is B-Hoélder (Q;(t) = ktP) or p; is k-Lipschitz (Q;(t) = kt) then
pi(x, ¥) is Dini continuous.

Definition 4. Given S = (X, (¢;)j-0.1. (Pj)j_01) We define (see
Miculescu [15]), the transfer operator Bs : C(X,R) — C(X2,R) by

Bs(HNx.y) = Y pjx ) f(@;(x.¥)),

j=0.1

for all (x, y) € X2. The Markov operator Ls : Prob(X) x Prob(X) —
Prob(X) is given by

/ FOALs (. v) (€)= / Bs(f) (. y)d (1t x V) (x,Y).
X X2

for any u, v € Prob(X) and any continuous f : X — R.

We recall that, under the hypothesis E1 and E2 we get, from
Miculescu [15], Theorem 4.4, that:

1- There is a unique s € Prob(X) such that Ls(us, Us) = is;

2- supp(is) = A(S), the attractor of the GIFS;

3- For any pg, 1 € Prob(X) the sequence i,y = Ls(ij, [j41)
converges in the Monge-Kantorovich distance dy? (see [12],
Definition 2.53), to us.

2 dy(p,v) = SUPyips(f)<1 [ fdi — [ fdv, for any p, v € Prob(X).
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