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a b s t r a c t 

In 1987, Elton [11], has proved the first fundamental result on the convergence of IFS, the Elton’s Er- 

godic Theorem. In this work we prove the natural extension of this theorem to the projected Hutchinson 

measure μα associated to a GIFSpdp S = 

(
X, (φ j : X 

m → X ) 
j=0 , 1 , ... ,n −1 

, (p j ) j=0 , 1 , ... ,n −1 

)
, in a compact metric 

space ( X, d ). More precisely, the average along of the trajectories x n ( a ) of the GIFS, starting in any initial 

points x 0 , . . . , x m −1 ∈ X satisfies, for any f ∈ C(X, R ) , 

lim 

N→ + ∞ 

1 

N 

N−1 ∑ 

n =0 

f (x n (a )) = 

∫ 
X 

f (t) dμα(t) , 

for almost all a ∈ � = { 0 , 1 , . . . , n − 1 } N , the symbolic space. Additionally, we give some examples and 

applications to Chaos Games and Nonautonomous Dynamical Systems defined by finite difference equa- 

tions. 

© 2017 Elsevier Ltd. All rights reserved. 

Introduction 

In 2008, Mihail and Miculescu [17] , has introduced the Gener- 

alized Iterated Function Systems (GIFS, for short). They prove that 

there exists a fractal attractor and give estimates for the rate of 

convergence for contractive GIFS. In 2009, Mihail [16] , has consid- 

ered the Hutchinson measure associated to a GIFS with place de- 

pendent probabilities (GIFSpdp for short) that generalizes the clas- 

sical Hutchinson measure, the invariant measure, associated to an 

Iterated Function System (IFS for short). 

In this work, the central idea is to extend the GIFS to an IFS in 

a bigger space, that we call Extended GIFS . For this IFS we obtain 

an Extended Hutchinson measure . We also set up the properties of 

the extended Hutchinson measure and its relation with the original 

GIFS. 

Using the extension, we prove an ergodic theorem that extends 

the classic Elton’s ergodic theorem for IFS (Elton [11] ) to the pro- 

jected Hutchinson measure associated to a GIFS. From our results, 

we prove a Chaos game theorem for GIFS. As an application, we 

obtain some results on the stability and the asymptotic behav- 

ior of nonautonomous dynamical systems defined by finite differ- 

ence equations. Also, we show how to recover properties of Gibbs 

measures for Hölder potentials through an appropriate GIFS that is 

built from an expansive endomorphism. 

E-mail addresses: elismar.oliveira@ufrgs.br , oliveira.elismar@gmail.com 

The paper has three sections. In the Section 2 , we recall the 

basic facts about GIFS and GIFSpdp, that we will use in the rest of 

the paper. In the Section 3 , we introduce the extension of a GIFS 

and prove the Ergodic Theorem ( Theorem 23 ). Section 4 , is devoted 

to applications. The main goal here is to prove the Chaos Game 

Theorem ( Theorem 25 ), allowing us to draw the attractor of the 

extended GIFS and his projection. 

We believe that our results and technics will be useful for forth- 

coming works and for other researchers in this area. The ergodic 

theorem we prove and his consequences, provides a useful tool on 

the understanding of GIFS. 

1. Motivation 

A well known example of Discrete Nonautonomous Dynamical 

System (see Pötzsche [18] ) is the dynamics generated by a finite 

difference equation(FDE), defined by a nonautonomous recurrence 

relation of order m ≥ 2, nominally 

x j+ m 

= f (x j+ m −1 , x j+ m −2 , . . . , x j , ω j ) , j ≥ 0 , 

where ω 0 , ω 1 , . . . ∈ I. The control sequence (ω j ) j=0 , 1 , ... represents 

some seasonal interference acting on each iteration by changing 

the standard recursiveness on a FDE. It can be modeled by a GIFS 

S = (X m , (φ j ) j=0 ... n −1 ) where φj : X 

m → X is given by 

φ j (y 0 , y 1 , . . . , y m −1 ) = f (y 0 , y 1 , . . . , y m −1 , ω j ) . 

The control set I could be finite or not. In this case, the orbit of the 

GIFS from the point (c 0 , . . . , c m −2 , c m −1 ) is equal to the orbit of the 

http://dx.doi.org/10.1016/j.chaos.2017.03.016 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2017.03.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.03.016&domain=pdf
mailto:elismar.oliveira@ufrgs.br
mailto:oliveira.elismar@gmail.com
http://dx.doi.org/10.1016/j.chaos.2017.03.016


64 E.R. Oliveira / Chaos, Solitons and Fractals 98 (2017) 63–71 

FDE with initial conditions: ⎧ ⎪ ⎨ 

⎪ ⎩ 

x j+ m 

= f (x j+ m −1 , x j+ m −2 , . . . , x j , ω j ) , ω ∈ I N 

x 0 = c 0 
· · · = · · ·
x m −1 , = c m −1 

If the associated GIFS satisfy the hypothesis E1 and E2, that we 

define in the next, we can apply our theory to study the asymp- 

totic behavior and the limit sets of these nonautonomous dynami- 

cal systems. 

2. Background on GIFS and GIFSpdp 

In this section, we will recall the basic definitions and results 

on the theory of GIFS. See Miculescu [15] , for more details and the 

notation. We notice that the word “generalized” has been used in 

several different ways representing more general components of a 

classical IFS. Here, generalized, means that functions are from X 

m 

to X instead X to X . 

2.1. Generalized iteration function system (GIFS) 

Let ( X, d ) be a compact 1 metric space (typically X = [0 , 1] , X = 

{ 0 , 1 , . . . , d − 1 } N , X = [0 , 1] N , etc). Consider the topology on X 

m 

given by 

d ∞ 

((x 1 , x 2 , . . . , x m 

) , (y 1 , y 2 , . . . , y m 

)) = max 
i =1 , ... ,m 

d(x i , y i ) , 

then ( X 

m , d ∞ 

) is also a compact metric space. 

Definition 1. A (continuous) generalized iterated function system 

(GIFS) of degree m is a (finite) family S of continuous functions 

φj : X 

m → X , denoted by S = (X, (φ j ) j=0 ... n −1 ) . 

See Secelean [19,20] for the analogous theory for countable 

GIFS. In order to avoid technicalities we assume that m = n = 2 

that is, two maps in X 

2 (see Remark 6 for additional details). So 

the standard GIFS is S = ( X , (φ j ) j=0 , 1 
) where φ0 , φ1 : X 

2 → X . We 

recall that, 

Lip(X 

2 , X ) = { f | d( f (x 0 , y 0 ) , f (x 1 , y 1 )) 

≤ Cd((x 0 , y 0 ) , (x 1 , y 1 )) , C := Lip( f ) } 
and 

Lip C,D (X 

2 , X ) = { f | d( f (x 0 , y 0 ) , f (x 1 , y 1 )) 

≤ C d(x 0 , x 1 ) + D d(y 0 , y 1 ) , C, D > 0 } . 
From now on we will assume the contraction hypothesis: 

E1 - Each φj : X 

2 → X is in Lip C j ,D j (X 2 , X ) and C j + D j < 1 . In 

particular, all the φj are Lipschitz contractions and Lip(φ j ) = C j + 

D j . 

As usual, we denote K(X ) ⊂ P(X ) = 2 X , the family of compact 

subsets of X . Moreover, K 

∗(X ) = K(X ) \ { ∅ } . 
Definition 2. Given f : X 

2 → X we define the associated set 

function F f : P 

∗(X ) 2 → P 

∗(X ) by F f (K 1 , K 2 ) = f (K 1 × K 2 ) . Also, we 

define the function F S : K 

∗(X ) 2 → K 

∗(X ) associated to S by 

F S (K 1 , K 2 ) = 

⋃ 

j=0 , 1 F φ j 
(K 1 , K 2 ) . A set Y ⊆ X is self-similar(or frac- 

tal) with respect to S if F S (Y, Y ) = Y. 

The map F S is sometimes called, Fractal operator, Barnsley’s 

Function or Hutchinson’s operator, in the literature. From Mihail 

and Miculescu [17] , Theorem 3.5, we know that under the hy- 

pothesis E1, there exists a unique attractor A (S) ∈ K 

∗(X ) for the 

1 We assume compactness to avoid technicalities. Many of the results that we 

present here are true if ( X, d ) is just complete. It is sufficient because the measures 

we use are always supported in the attractors that are compact sets. 

GIFS that depends continuously on φj . That is, A (S) is self-similar 

( F S (A (S) , A (S)) = A (S) ) and, for any H 0 , H 1 ∈ K 

∗(X ) the recursive 

sequence of compact subsets H j+2 = F S (H j+1 , H j ) , converges to 

A (S) with respect to the Hausdorff metric: A (S) = lim j→∞ 

H j . 

The natural question to make about GIFS is if they of- 

fer some new fractals. The positive answer is given by Mihail 

and Miculescu [17] through examples and in the recent work 

Strobin [22] for a more general case. We will discuss that, in the 

end of the Section 3.1 . We should mention that recently, in 2015, 

Dumitru et al. [9] they consider many questions regarding to the 

extension of the concept of GIFS for topological contractions as- 

suming that the family of maps is not just finite or countable 

but possibly an arbitrary family F of maps from X 

m to X , satisfy- 

ing suitable hypothesis. Several results are obtained by using code 

spaces (see [21] for details). 

2.2. GIFS with place dependent probabilities (GIFSpdp) 

In this section, we use the notation in Miculescu [15] . The set 

Prob ( X ) will always be the set of regular Borel probabilities on X 

with respect to the Borel sigma algebra induced by the metric. 

Definition 3. A generalized iteration function system with place 

dependent probabilities (GIFSpdp) is a family S of continu- 

ous functions φj : X 

2 → X , and weight functions (probabilities) 

p j : X 

2 → [0, 1] such that p 0 (x, y ) + p 1 (x, y ) = 1 , denoted S = 

(X, (φ j ) j=0 , 1 , (p j ) j=0 , 1 ) . 

One special case is when the probabilities are given by 

a potential function u : X → R , then p j (x, y ) = u (φ j (x, y )) and 

u (φ0 (x, y )) + u (φ1 (x, y )) = 1 . We denote such case as a uniform 

GIFSpdp according to Lopes and Oliveira [13] . We consider an ap- 

plication of this after Theorem 28 . 

E2 - For a GIFSpdp we assume two hypothesis on the weights: 

a) p i ( x, y ) ≥ δ > 0, for any i = 0 , 1 , x, y ∈ X; 

b) p i ( x, y ) is in Lip c i ,d i (X 2 , [0 , 1]) with c i + d i < 1 . 

We recall that p i ( x, y ) is Dini continuous if 
∫ ε 

0 
Q i (t) 

t dt < ∞ for 

some ε > 0, where Q i is the modulus of continuity of p i , | p i (x, y ) −
p i (x ′ , y ′ ) | ≤ Q i 

(
d((x, y ) , (x ′ , y ′ )) 

)
, ∀ (x, y ) � = (x ′ , y ′ ) . For instance if 

p i is β-Hölder ( Q i (t) = kt β ) or p i is k -Lipschitz ( Q i (t) = k t) then 

p i ( x, y ) is Dini continuous. 

Definition 4. Given S = 

(
X, (φ j ) j=0 , 1 , (p j ) j=0 , 1 

)
we define (see 

Miculescu [15] ), the transfer operator B S : C(X, R ) → C(X 2 , R ) by 

B S ( f )(x, y ) = 

∑ 

j=0 , 1 

p j (x, y ) f (φ j (x, y )) , 

for all ( x, y ) ∈ X 

2 . The Markov operator L S : P rob(X ) × P rob(X ) → 

P rob(X ) is given by ∫ 
X 

f (t) dL S (μ, ν)(t) = 

∫ 
X 2 

B S ( f )(x, y ) d(μ × ν)(x, y ) , 

for any μ, ν ∈ Prob ( X ) and any continuous f : X → R . 

We recall that, under the hypothesis E1 and E2 we get, from 

Miculescu [15] , Theorem 4.4, that: 

1- There is a unique μS ∈ P rob(X ) such that L S (μS , μS ) = μS ; 
2- supp (μS ) = A (S) , the attractor of the GIFS; 

3- For any μ0 , μ1 ∈ Prob ( X ) the sequence μ j+2 = L S (μ j , μ j+1 ) 

converges in the Monge-Kantorovich distance d H 
2 (see [12] , 

Definition 2.53), to μS . 

2 d H (μ, ν) = sup Lips ( f ) ≤1 

∫ 
f dμ − ∫ 

f dν, for any μ, ν ∈ Prob ( X ). 
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