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a b s t r a c t 

In the present paper, the synchronization by the Ge-Yao-Chen (GYC) partial region stability theory of 

chaotic Mathieu-Van der Pol and chaotic Duffing-Van der Pol systems with fractional order-derivative 

is proposed. Numerical simulations show that this synchronization technique is very effective and it 

turns out that the fractional order-derivative induces quick synchronization compared to integer order- 

derivative of these systems. In order to bring out the chaotic behavior of these systems either with frac- 

tional or with integer order-derivative, we simulate their phase portraits and the Lyapunov exponent. 

Moreover, we provide in this work an approximated solution to both systems to show that the solution 

of such a system can be represented as a simple power-series function. Furthermore, the representation 

of the error dynamics with respect to the time before and after the control action approves the effec- 

tiveness of the control method and proves the possibility of stabilization and controllability of chaotic 

systems with an appropriate. Furthermore, the synchronization of the fractional Mathieu-Van der Pol 

system using the fractional Duffing-Van der Pol system is simulated. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The properties of non-linear systems have a great deal of inter- 

est, since they have many applications in various fields of sciences 

such as in biological, chemical and physical systems. The dynamics 

of such systems might be specified by various different means in- 

cluding ordinary differential equations which are the most known, 

partial differential equations, iterate maps and recently fractional 

differential equations. The last notion involves the derivative with 

memory and it is the generalization of ordinary and partial differen- 

tial equations . Typical examples of systems that can be represented 

by these general types of equations are onset of coherent radiation 

in lasers and masers [1] , self-excitations in electric circuits, self- 

organizations in chemical reactions [2] , non-linear mechanics [3] , 

etc. 

The occurrence of chaotic behavior in non-linear oscillators sub- 

jected to periodic forcing is widespread and well known. Exam- 
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ples are the Duffing equation arising almost ubiquitously in mod- 

els of mechanical oscillations [4] , the Van der Pol equation describ- 

ing, for example, the triode oscillation in electrical circuits [5] and 

the Mathieu equation which describes for example the motion of 

particles vibrating in an elliptic drum [6] , which have been exten- 

sively studied. The parameter space of these equations are divided 

with great complexity into regions of different qualitative behavior, 

and the space of initial states is divided with similar complexity 

into the basin of attraction of competing attractors which may be 

steady, periodic or chaotic. The last notion describes erratic mo- 

tions in non-linear dynamical systems. Nowadays, the chaos the- 

ory is used in several domains such as geophysics, meteorology, 

astronomy, economy, biology, etc. Moreover, the chaos theory is 

the best mechanism for signal design with potential application 

in telecommunication and coding systems [7] . A chaotic system is 

unpredictable but it is perfectly described by deterministic equa- 

tions [8] . It is deterministic because, knowing the exact state of a 

system at some given time: the initial state can help define the 

state of the system at any time. Deterministic and unpredictabil- 

ity are two paradoxical notions but the link between them is de- 

termined by the sensitivity to initial conditions [9] . That means 
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two almost initial conditions can lead to very different states of 

the system. The impossibility to predict the evolution of deter- 

ministic system is a real characteristic of chaotic systems. Due to 

their unpredictability character, chaotic phenomena are very dif- 

ficult to control. However, scientists have shown that a chaotic 

motion can be controlled under certain conditions. Even so, our 

main interest in this work is the study of the chaotic or hyper- 

chaotic systems described by fractional order-derivative systems. It 

has been shown recently that, chaotic behavior can appear with 

fractional order differentiation [10] . Over the unpredictability of 

such a system, its instability character makes its controllability a 

big challenge. However, because of its several potential applica- 

tions, many researchers are nowadays interested and have even 

succeeded to control chaotic motions either theoretically or ex- 

perimentally [11] . Hence, the synchronization of chaotic systems 

has gained increasing attention after the pioneer work of Pecora 

et al. [12] in 1990. That is, many types of chaos synchronization 

have been proposed such as the phase synchronization developed 

by Pecora in [12] . The complete synchronization has also been de- 

veloped by Liu et al. in [13] , the adaptive synchronization by Shi- 

hua et al. [11] . Furthermore, Zheng-Ming et al. [14] developed the 

generalized synchronization using the GYC (Ge-Yao-Chen) partial 

region stability theory for the case of Mathieu-Van der Pol and 

Duffing-Van der Pol systems. Added to this, we have also the pro- 

jective synchronization [15] , hybrid synchronization [16] , etc. Gen- 

erally, these types of synchronization have been carried out us- 

ing several synchronization schemes such as: linear and non-linear 

feedback synchronization [17] , adaptive control [11] , time delay 

feedback approach [18] , etc. In their work, Hongmin et al. [19] have 

shown that for the order of derivative α = 0 . 9 , the system behaves 

chaotically. In the same idea, Ghaderi et al. [20] studied the con- 

trol and synchronization of chaotic Coullet system using fractional 

order-derivative. They used active control for synchronization and 

the simulations show the effectiveness of the method. Very re- 

cently, Kumar et al. [21] introduced a Mathieu-Van der Pol sys- 

tem with fractional order-derivative. They came out with some re- 

markable conclusions: the synchronization of Mathieu-Van der Pol 

chaotic system of fractional order-derivative by linear feedback can 

be achieved and then, the stability of the system is possible under 

certain conditions. However, they did not take into consideration 

the more general case where we have different order-derivatives 

in the system which implies α1 � = α2 � = α3 � = α4 . 

In this paper, the coupled Duffing-Van der Pol and the cou- 

pled Mathieu-Van der Pol chaotic systems with fractional order- 

derivative are studied taking into consideration this generality. The 

synchronization is approached by the GYC partial region stability 

theory. This implies by theorem that if V is a positive definite 

function on the partial region with opposite sign to that of its 

derivative and the function V itself permits an infinitesimal upper 

limit, then the undisturbed motion is asymptotically stable on the 

partial region [14] . Compared to other techniques of synchroniza- 

tion which include the backstepping method, the adaptive design 

method, the linear and non-linear feedback method, sampled-data 

feedback synchronization, time-delay feedback, etc. [22–25] , this 

techniques is very appropriate due to the fact that it introduces 

less simulation error in the system, also from the fact that using 

this theory we are able to construct the Lyapunov function as a 

simple linear-function from where the control parameters are eas- 

ily designed. This synchronization approach is more general since 

it is applicable for the autonomous and non-autonomous systems, 

for perturbed and unperturbed systems and finally for linear and 

non-linear systems. The upper drawbacks can be overcome by us- 

ing this method. This drawback can only be calculated in the case 

of finite evolution time in computer simulation. However, infinite 

evolution time is needed by definition of Lyapunov exponent [26] . 

It has been applied to several chaotic systems and the simulation 

results demonstrate the effectiveness and feasibility of the method. 

These systems include the fly-ball governor with and without sys- 

tem structure perturbation [26] , Lorenz system [26] ,etc. These are 

the motivations for choosing to apply this synchronization tech- 

nique to the fractional Mathieu-Van der Pol and fractional Duffing- 

Van der Pol systems in this work. 

The present paper is structured as follows: In Section 2 , the 

coupled Mathieu-Van der Pol and the coupled Duffing-Van der 

Pol systems with fractional order-derivative are introduced. In 

Section 3 , we provide an approximated solution to the Mathieu- 

Van der Pol and Duffing-Van der Pol fractional systems using the 

Variational Iterative Method. In Section 4 , we introduce the sta- 

bility analysis, the synchronization scheme and the fractional Lya- 

punov exponent is presented. Section 5 presents the numerical re- 

sults. Finally, the conclusion is provided in Section 6 . 

2. Coupled Mathieu-Van der Pol and the coupled Duffing-Van 

der Pol systems with fractional order-derivative 

The coupled Mathieu-Van der Pol system [21] with fractional 

order-derivative is given as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

D 

α1 ∗ x 1 ( t ) = x 2 
D 

α2 ∗ x 2 ( t ) = −( a + bx 3 ) x 1 − ( a + bx 3 ) x 
3 
1 − cx 2 + dx 3 

D 

α3 ∗ x 3 ( t ) = x 4 
D 

α4 ∗ x 4 ( t ) = −ex 3 + f 
(
1 − x 2 3 

)
x 4 + gx 1 , 

(2.1) 

with initial values x 1 (0), x 2 (0), x 3 (0), x 4 (0) and a, b, c, d, e, f, g 

the parameters of the system. For all the simulations in this pa- 

per, we considered ( a, b, c, d, e, f, g ) = (10, 3, 0.4, 70, 1, 5,0.1) and 

the initial conditions ( x 10 , x 20 , x 30 , x 40 ) = (0.1, -0.5, 0.1, -0.5). Let us 

now consider α1 � = α2 � = α3 � = α4 all real numbers taken in (0,1). 

Fig. 1 gives the phase portrait of the system plotted in Python with 

different values of α so that, α1 = 0 . 98 , α2 = 0 . 99 , α3 = 0 . 999 , 

α4 = 0 . 99 . Analogically, the Duffing-Van der Pol equation with frac- 

tional order derivative is given by: ⎧ ⎪ ⎨ 

⎪ ⎩ 

D 

α1 ∗ z 1 = z 2 
D 

α2 ∗ z 2 = −z 1 − z 3 1 − hz 2 + iz 3 
D 

α3 ∗ z 3 = z 4 
D 

α4 ∗ z 4 = − jz 3 + k 
(
1 − z 2 3 

)
z 4 + lz 1 , 

(2.2) 

where h, i, j, k, l are also the parameters of the system with the 

values ( h, i, j, k, l ) = (0.0 0 06, 0.67, 1,5, 0.05) and the initial condi- 

tions ( z 10 , z 20 , z 30 , z 40 ) = (2, 2.4, 5, 6). 

Let us now consider the fractional order-derivative where α1 � = 

α2 � = α3 � = α4 are all real numbers taken in (0,1), As in the previ- 

ous case the system also exhibits chaotic behavior which is shown 

in Fig. 2 depicting the phase portrait of the system for different 

order of derivative, α1 = 0 . 98 , α2 = 0 . 99 , α3 = 0 . 999 , α4 = 0 . 99 . 

D 

αi ∗ , 0 < αi < 1 stands for the Caputo derivative defined so that, 

for n − 1 < α < n, n ∈ N , α ∈ R and a function f ( t ) such that 

D 

α∗ f ( t ) exists, one has 

D 

α
∗ f ( t ) = 

1 

�( n − α) 

∫ t 

a 
( t − s ) 

−1 −α+ n f (n ) ( s ) ds, (2.3) 

where f ( n ) ( s ) denotes the ordinary derivative of order n of the func- 

tion f ( s ). 

From Figs. 1 and 2 , we observed that, as well as the Mathieu- 

Van der Pol and the Duffing-Van der Pol using integer-order deriva- 

tive, the fractional order derivative of these systems also depicts a 

chaotic behavior. This is the case for the values of αi in the range 

of [0.9-1[. These curves are the so called attractor from their char- 

acter to keep a particle or an object in the same region no matter 

where the particle starts its motion. 



Download English Version:

https://daneshyari.com/en/article/5499809

Download Persian Version:

https://daneshyari.com/article/5499809

Daneshyari.com

https://daneshyari.com/en/article/5499809
https://daneshyari.com/article/5499809
https://daneshyari.com

