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1. Introduction 

The correlation dimension was introduced in [14] . It is widely 

used in numerical investigations of dynamical systems. The prop- 

erties of the correlation dimension and the L q -spectrum has been 

studied for various types of attractors of iterated function systems; 

for example, see [3,12,13,15,18] . We continue this line of research 

and obtain our results Lemma 2.1 and Proposition 2.3 which com- 

plement the study initiated in [7] . 

The other important object in this paper is the local dimension 

of a measure. It has a close connection with the theory of Haus- 

dorff and packing dimensions of a set. Therefore it is a classical 

problem to try to express the local dimension by means of the 

data used to construct the set; for example, see [1,2,9,10,17] . Our 

main result in this section is Theorem 3.6 . Under a natural separa- 

tion condition, the finite clustering property, it solves this problem 

completely. 

2. Correlation dimension via general filtrations 

Let ( X, d ) be a compact metric space and μ a locally finite Borel 

regular measure supported in X . Since the metric will always be 

clear from the content, we simply denote ( X, d ) by X . Recall that 
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the support of a measure μ, denoted by spt (μ) , is the smallest 

closed subset of X with full μ-measure. For s ≥ 0 and x ∈ X , define 

the s-potential of μ at the point x to be 

φs (x ) = 

∫ 
d(x, y ) −s d μ(y ) , 

where d ( x, y ) is the distance between two points x and y in X . Fur- 

thermore, define the s-energy of μ to be 

I s (μ) = 

∫ 
φs (x ) d μ(x ) = 

∫ ∫ 
d(x, y ) −s d μ(x ) d μ(y ) . 

For the basic properties of the s -energy, the reader is referred to 

the Mattila’s book [11, §8] . The quantity 

dim cor (μ) = inf { s : I s (μ) = ∞} = sup { s : I s (μ) < ∞} 
is called the correlation dimension of the measure μ. Measure- 

theoretical properties of this dimension map are studied in [12] . 

We now recall the definition of the local dimension of mea- 

sures. Let μ be a locally finite Borel regular measure on metric 

space X . The lower and upper local dimensions of the measure μ
at a point x ∈ X are defined respectively by 

dim loc (μ, x ) = lim inf 
r↓ 0 

log μ(B (x, r)) 

log r 
, 

dim loc (μ, x ) = lim sup 

r↓ 0 
log μ(B (x, r)) 

log r 
. 

Here B ( x, r ) is the closed ball of radius r > 0 centered at x ∈ X . 

We also define the lower Hausdorff dimension of the measure μ by 

setting 

dim H (μ) = ess inf x ∼μ dim loc (μ, x ) . 

http://dx.doi.org/10.1016/j.chaos.2017.02.004 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2017.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.02.004&domain=pdf
http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
mailto:y.jiaojiao1025@yahoo.com
mailto:antti.kaenmaki@jyu.fi
mailto:wumin@scut.edu.cn
http://dx.doi.org/10.1016/j.chaos.2017.02.004


40 J. Yang et al. / Chaos, Solitons and Fractals 97 (2017) 39–43 

The correlation dimension of a measure μ is at most the lower 

Hausdorff dimension of the measure μ. We recall the proof of this 

simple fact in the following lemma. 

Lemma 2.1. If X is a compact metric space and μ is a finite Borel 

regular measure on X, then 

dim loc (μ, x ) = inf { s : φs (x ) = ∞} = sup { s : φs (x ) < ∞} 
for all x ∈ X. Furthermore, 

dim cor (μ) = lim inf 
r↓ 0 

log 
∫ 

μ(B (x, r)) d μ(x ) 

log r 
≤ dim H (μ) . 

Proof. Fix x ∈ X . If s is so that φs ( x ) < ∞ , then 

r −s μ(B (x, r)) ≤
∫ 

B (x,r) 
d(x, y ) −s d μ(y ) ≤ φs (x ) for all r > 0 . 

(2.1) 

It follows that dim loc ( μ, x ) ≥ s and thus, 

dim loc (μ, x ) ≥ inf { s : φs (x ) = ∞} . 
To show that dim cor ( μ) ≤ dim H ( μ), fix s > dim H ( μ). Notice that 

there exists a set A with μ( A ) > 0 such that dim loc ( μ, x ) < s 

for all x ∈ A . The above reasoning implies that φs (x ) = ∞ for all 

x ∈ A . Therefore I s (μ) = ∞ and the claim follows. Similarly, if s < 

dim cor ( μ), then, by integrating (2.1) , we see that 

r −s 

∫ 
μ(B (x, r)) d μ(x ) ≤ I s (μ) < ∞ for all r > 0 . 

Therefore 

lim inf 
r↓ 0 

log 
∫ 

μ(B (x, r)) d μ(x ) 

log r 
≥ dim cor (μ) . (2.2) 

To show the remaining inequalities, fix t < s < dim loc ( μ, x ). Ob- 

serve that now there exists r 0 > 0 such that μ( B ( x, r )) < r s for all 

0 < r < r 0 . Thus 

φt (x ) = 

∫ 
d(x, y ) −t d μ(y ) = t 

∫ ∞ 

0 

r −t−1 μ(B (x, r)) d r 

≤ t 

∫ r 0 

0 

r s −t−1 d r + t 

∫ ∞ 

r 0 

r −t−1 μ(B (x, r)) d r < ∞ 

and inf { s : φs (x ) = ∞} ≥ t . The proof of the converse inequality of 

(2.2) is similar and thus omitted. �

Remark 2.2. (1) If there exist A ⊂ X and s, r 0 , c > 0 such that μ( B ( x, 

r )) ≤ cr s for all 0 < r < r 0 and x ∈ A , then Lemma 2.1 implies 

that dim cor ( μ| A ) ≥ s . In particular, if μ is a finite measure, then 

for every ε > 0, there exists a compact set A with μ( X �A ) < ε
such that dim cor ( μ| A ) ≥ dim H ( μ). To see this, fix ε > 0 and let 

{ s i } i ∈ N be a strictly increasing sequence converging to dim H ( μ). 

Egorov’s theorem implies that for every i , there are r i > 0 and 

a compact set A i ⊂ X with μ(X \ A i ) < 2 −i ε such that μ(B (x, r)) < 

r s i , for all 0 < r < r i and x ∈ A i . Defining A = 

⋂ ∞ 

i =1 A i , we have 

μ(X \ A ) ≤ ∑ ∞ 

i =1 μ(X \ A i ) < ε. Fix N ∈ N and let B N = 

⋂ N 
i =1 A i , then 

μ(B (x, r)) < r s N , for all 0 < r < min i ∈ {1, ���, N } r i and x ∈ B N ⊃A . This 

gives dim cor ( μ| A ) ≥ s N and, as N was arbitrary, finishes the proof. 

(2) Let us consider the standard 

1 
3 -Cantor set and define μp 

to be the Bernoulli measure associated to the probability vec- 

tor (p, 1 − p) . It is well known that dim cor (μp ) = − log 3 (p 2 + (1 −
p) 2 ) ; for example, see Proposition 2.3 . Recalling e.g. [4, Proposi- 

tion 10.4] , we see that dim cor ( μp ) < dim H ( μp ) for all p ∈ (0, 

1) �{1/2}. 

If the metric space X is doubling, then we can define the cor- 

relation dimension via a discrete process. More precisely, we will 

see that the definition can be given in terms of general filtrations. 

These filtrations can be considered to be generalized dyadic cubes. 

This gives a way to calculate the correlation dimension in many 

Moran constructions; see Corollary 3.3 . 

Before stating the theorem, we recall the definitions of the dou- 

bling metric space and the general filtration. A metric space X is 

said to be doubling , if there is a doubling constant N = N(X ) ∈ N 

such that any closed ball B ( x, r ) with center x ∈ X and radius r > 0 

can be covered by N balls of radius r /2. A doubling metric space is 

always separable and the doubling property can be stated in sev- 

eral equivalent ways. For instance, a metric space X is doubling if 

and only if there are 0 < s, C < ∞ such that if B is an r -packing of 

a closed ball B ( x, R ) with 0 < r < R , then the cardinality of B is at 

most C ( R / r ) s . Here the r-packing B of a set A is a collection of dis- 

joint closed balls having radius r . We write λB (x, r) = B (x, λr) for 

λ ∈ (0, ∞ ). 

Now we give the definition of the general filtration. We assume 

that (δn ) n ∈ N and (γn ) n ∈ N are two decreasing sequences of positive 

real numbers satisfying 

(F1) δn ≤ γ n for all n ∈ N , 

(F2) lim n →∞ 

γn = 0 , 

(F3) lim n →∞ 

log δn / log δn +1 = 1 , 

(F4) lim n →∞ 

log γn / log δn = 1 . 

For each n ∈ N , let Q n be a collection of disjoint Borel subsets of 

the doubling metric space X such that each Q ∈ Q n contains a ball 

B Q of radius δn and is contained in a ball B Q of radius γ n . Define 

E = 

⋂ 

n ∈ N 

⋃ 

Q∈Q n 
Q . 

The collection {Q n } n ∈ N is called the general filtration of E . 

The classical dyadic cubes of the Euclidean space is an exam- 

ple of a general filtration. Such kind of nested constructions can 

also be defined on doubling metric spaces and these constructions 

also serve as examples. In Lemma 3.1 , we show that certain Moran 

constructions are general filtrations. These constructions include, 

for example, all the self-conformal sets satisfying the strong sepa- 

ration condition. 

Besides giving the desired discrete version of the definition, the 

following result states also that the correlation dimension is in fact 

the L 2 -spectrum of the measure. 

Proposition 2.3. Let X be a compact doubling metric space. If 

{Q n } n ∈ N is a general filtration of E and μ is a finite Borel regular 

measure on E, then 

dim cor (μ) = lim inf 
n →∞ 

log 
∑ 

Q∈Q n μ(Q ) 2 

log δn 
. 

Proof. Observe that for each Q ∈ Q n we have Q ⊂ B ( x , 2 γ n ) for all 

x ∈ Q . Therefore ∫ 
μ(B (x, 2 γn )) d μ(x ) = 

∑ 

Q∈Q n 

∫ 
Q 

μ(B (x, 2 γn )) d μ(x ) ≥
∑ 

Q∈Q n 
μ(Q ) 2 

and it follows from Lemma 2.1 and (F4) that 

dim cor (μ) ≤ lim inf 
n →∞ 

log 
∫ 

μ(B (x, 2 γn )) d μ(x ) 

log 2 γn 

≤ lim inf 
n →∞ 

log 
∑ 

Q∈Q n μ(Q ) 2 

log δn 
. 

To show the other inequality, fix r > 0 and let n ∈ N be such that 

γn +1 ≤ r < γn . Choose for each Q ∈ Q n balls B Q of radius δn and B Q 

of radius γ n so that B Q ⊂ Q ⊂ B Q . Now for each Q ∈ Q n we have 

Q ⊂ B (x, 2 γn ) ⊂ B Q [4 γn ] ⊂
⋃ 

Q ′ ∈C Q 
Q 

′ 
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