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a b s t r a c t 

This paper concerns the control problems of an induction motor with chaotic behavior due to the defi- 

ance of indirect field oriented control applied with a proportional integral (PI) speed loop. The feedbacks 

predictive control is used to control this chaotic system owing to its simplicity of configuration and im- 

plementation. In general, the gain of the predictive control used in the literature is taken as a constant 

included in an interval, however, in this work, this gain is taken a matrix and Linear matrix inequality is 

using to calculate this gain. To highlight the efficiency and applicability of the proposed control scheme, 

simulations and experimental results are presented. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the scientific field, chaos could be defined as “the art of 

forming the complex from the simple”. A chaotic system is there- 

fore a deterministic and unpredictable system, but it is also and 

above all a nonlinear system [1] . The link between these two para- 

doxical notions, determinism and unpredictability, is the property 

of sensitivity to initial conditions. Indeed, two initial conditions 

that are infinitely close can lead to very different future states of 

the system. The theory of chaos is a discipline in its own right 

based on the theory of dynamic systems which results, in part, 

from the work of the mathematician Henri Poincar (1854–1912) at 

the end of the XIXth century. 

In 1963, meteorologist Edward Lorenz [2] was experimenting 

with a method for predicting meteorological phenomena. It was 

by pure chance that he observed that a minimal modification of 

the initial data could considerably change his results. Lorenz had 

just discovered the phenomenon of sensitivity to the initial con- 

ditions. The systems corresponding to this property will be from 

1975 denominated: chaotic systems. It was during the 1970s that 

the theory of chaos began to grow [3] . Since, The theory of chaos 

has applications in meteorology, sociology, physics, computer sci- 

ence, engineering, economics, biology and philosophy [3–7] . 
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The incessant application of the permanent magnet syn- 

chronous machine (PMSM) in the industry is due to its many ad- 

vantages, among which are [9] :–High start torque, –high power 

factor,–low inertia,–high torque and high efficiency and simple 

structure. However, the chaotic characteristics will appear in PMSG 

under certain specific parameters and working conditions [8] . This 

chaotic behavior will not only affect system stability, safety, and 

even endanger its system load. Therefore, based on the problems 

of damage caused by chaos in the system, it is imperative to adopt 

an effective control method, to eliminate the chaotic phenomena 

in the operation of the machine when the chaotic PMSM caused 

the instability of the engine system. The first mathematical model 

of the chaotic PMSM was established in 1994 by Hemanti [10] . In 

2002, a more detailed study of the chaos in the PMSM at was com- 

pleted by Zhong et al. [11] and Gao et al. [12] . Recently the frac- 

tional calculus is widely used in the fields of nonlinear dynamics 

[13] and recently Borah et al. [14] presented a new fractional-order 

model of a PMSG. Since then, the control of chaos in the PMSM 

has emerged as a new research axes and numerous theory and 

methods have been developed, such as the unidirectional correla- 

tion method [15] , the indirect method of neural adaptive approxi- 

mation [16] , Adaptive sliding methods associated with neural net- 

works [17] , high-order sliding mode [18] , neural adaptive control 

[19] , finite-time adaptive methods [20] , Generalized predictive con- 

trol [21] , predictive control [14,22] and many other methods [23–

27] . In the literature, there are many interesting methods for con- 

trolling the nonlinear system which have not been investigated to 

control the chaotic PMSM such as [28] [29] and other perspective 
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for the application of controlling the chaotic PMSM such as in 

hydro-turbine [30] with modeling the hydro-turbine governing sys- 

tem in the process of load rejection transient with chaotic PMSM. 

Recently, Chen et al. [31] proposed a new mathematical model 

of a chaotic induction motor, with the indirect field oriented con- 

trol applied with a proportional integral (PI) speed loop and pro- 

posed sliding mode control to stabilize the system. In this pa- 

per, we are interested in the application of predictive control [32–

35] for the control of a chaotic behavior induction motor because 

of its simplicity of configuration and implementation. It’s a very 

used technique for the control of chaotic systems because of its 

advantages [34] . In general, the gain of the predictive control used 

in the literature is taken as a constant included in an interval and 

the control is applied to a single state of the system. The fist con- 

tribution of this work, is the consideration of this gain as a ma- 

trix and we propose a new approach to calculate it, this approach 

inspired from [36] is based on the linear matrix inequality (LMI). 

The second contribution of this work is the control of the chaotic 

induction motor with passive control and the comparison of the 

results obtained with those obtained by the LMI-predictive control 

to prove the effectiveness of the proposed approach and the third 

contribution of this work is the simulation of the circuit of the pro- 

posed controller using Multisim to valid the effectiveness of the 

approach presented. The work is organized as follows: in Section 2 , 

the theory of LMI-predictive control is presented. In Section 3 , the 

mathematical model of the chaotic induction system is describes. 

The performances of the proposed control approach is given and a 

comparison with passive control to demonstrate the performance 

of proposed approach in Section 4 . In Section 5 , the experimental 

results using Multisim to valid the effectiveness of the approach is 

presented. Finally, in Section 6 , we give some concluding remarks. 

2. The theory of the LMI-predictive feedback control 

Consider the class of nonlinear systems described by the dy- 

namic equation: {
˙ x (t) = f (x (t)) + u (t) 

x (t 0 ) = x 0 
(1) 

where: x ∈ R n the state of the system, u ∈ R n the control and 

f : R n × R + → R n is a non-linear continuous function. 

The objective of the predictive feedback control is to ensure 

that the system converges asymptotically to a stable fixed point 

or an unstable periodic orbit x f . 

The fixed point or equilibrium point of the system (1) is the 

point x f such as: 

dx 

dt 
= 

˙ x = f 
(
x f 

)
= 0 , (2) 

As part of the predictive control, the form of the control u ( t ) is 

chosen as proposed by Boukabou et al. [34] : 

u (t) = K(x p (t) − x (t)) (3) 

where: K the gain, x ( t ) the state of the system and x p ( t ) the pre- 

dicted state. 

Using a one-step forward prediction, we obtain [34] : 

u (t) = K( ̇ x (t) − x (t)) (4) 

The references [33–35] suppose that the gain K as a constant in- 

cluded in an interval. In our work, we assume the gain as a ma- 

trix, which must be calculated from the LMI using the following 

theorem: 

Theorem 1. the system (1) is asymptotically stable under the con- 

trol: u (t) = [ Y X −1 ] T ( ̇ x (t) − x (t)) , if and only if there exists a positive 

definite symmetric matrix X = X T = P > 0 and Y matrix for any sym- 

metric matrix Q = Q 

T > 0 , Checking the inequality: ∣∣∣∣A I 

I −Q 

−1 

∣∣∣∣ < 0 (5) 

with : 

A = D f 
(
x f 

)T 
X + D f 

(
x f 

)T 

Y − Y + X · D f 
(
x f 

)
+ Y T · D f 

(
x f 

)
− Y T (6) 

Proof Of Theorem 1. By linearizing the preceding system around 

the equilibrium point and using the first-order Taylor series expan- 

sion of f ( x ), we get: 

˙ x ( t ) = 

(
D f 

(
x f 

)
+ K(D f 

(
x f 

)
− I) 

)
x ( t ) (7) 

We consider the Lyapunov function: 

V (x (t)) = x T (t) P x (t) (8) 

where: P = P T > 0 . 

˙ V (x (t)) = 

˙ x T (t) P x (t) + x T (t) P ˙ x (t) 

= x (t) T (D f 
(
x f 

)T 
P + D f 

(
x f 

)T 
[ Y P −1 ] P 

−[ Y P −1 ] P ) x (t) + x (t) T (P · D f 
(
x f 

)
+ P · [ Y P −1 ] T · D f 

(
x f 

)
− P · [ Y P −1 ] T ) x (t) 

= x (t) T (D f 
(
x f 

)T 
P + D f 

(
x f 

)T 
Y − Y 

+ P · D f 
(
x f 

)
+ Y T · D f 

(
x f 

)
− Y T ) x (t) 

If the following LMI is checked: 

D f 
(
x f 

)T 
P + D f 

(
x f 

)T 
[ Y P −1 ] P − [ Y P −1 ] P 

+ P · D f 
(
x f 

)
+ P · [ Y P −1 ] · D f 

(
x f 

)
−P · [ Y P −1 ] T + Q < 0 (9) 

So ˙ V (x (t)) < −x (t) T Qx (t) < 0 , Then the system is asymptoti- 

cally stable. 

�

Lemma 1. Complement of Schur [37] Let a symmetric matrix S = [
S 11 S 12 

S T 
12 

S 22 

]
< 0 , a v ec S i j ( i, j = 1 , 2 ) have appropriate dimensions, 

the following inequalities are equivalent: 

1. S < 0. 

2. S 11 < 0 , S 22 − S T 
12 

S −1 
11 

S 12 < 0 . 

3. S 22 < 0 , S 11 − S 12 S 
−1 
22 

S T 
12 

< 0 . 

From the Schur complement, the Eq. (9) is equivalent to ∣∣∣∣B I 

I −Q 

−1 

∣∣∣∣ < 0 (10) 

with: 

B = D f 
(
x f 

)T 
P + D f 

(
x f 

)T 
K 

T P − K 

T P 

+ P · D f 
(
x f 

)
+ P · K · D f 

(
x f 

)
− P · K (11) 

By introducing a change of variable as follows: 

X = P et Y = K 

T P 

The matrix inequality (10) becomes: ∣∣∣∣A I 

I −Q 

−1 

∣∣∣∣ < 0 (12) 

with : 

A = D f 
(
x f 

)T 
X + D f 

(
x f 

)T 

Y − Y + X · D f 
(
x f 

)
+ Y T · D f 

(
x f 

)
− Y T (13) 

Which confirms the theorem. 
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