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a b s t r a c t 

In the present paper, we introduced a general model of the equations of the formulation in the context 

of Lord–Shulman theory which includes one thermal relaxation time and Green–Lindsay theory with two 

thermal relaxation times as well as the classical dynamical coupled theory to study the effect of the 

rotation and the magnetic field on the total deformation of a micropolar thermoelastic medium with an 

internal heat source that is moving with a constant speed. The analytical method used to obtain the 

formula of the physical quantities is the normal mode analysis. Comparisons made with the results of 

the three theories in the presence and absence of the magnetic field as well as an internal heat source. 

A comparison is also made with the results of the three theories for different values of the rotation. 

© 2017 Elsevier Ltd. All rights reserved. 

List of symbols 

σ ij Stress tensor 

μ0 Magnetic permeability 

ɛ 0 Electric permeability 

J Current density vector 

ɛ ijk Alternate tensor 

m ij Couple stress tensor 

j Rotational inertia 

ρ Density 

E Dilatation 

K Thermal conductivity 

λ, μ Lame’ constants 

αt Coefficient of linear thermal expansion, γ = (3 λ + 

2 μ) αt 

t 0 , t 1 , t 2 Thermal relaxation times 

T 0 Reference temperature 

δij Kronecker delta 

α, β , γ 1 , k 0 Micropolar constants 

	 Conductive temperature 

C E Specific heat at constant strain 

Q Internal heat source 

δ Two-temperature parameter 
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1. Introduction 

The linear theory of elasticity is of paramount importance in 

the stress analysis of steel, which is the commonest engineering 

structural material. To a lesser extent, linear elasticity describes 

the mechanical behavior of the other common solid materials, 

e.g. concrete, wood and coal. However, the theory does not apply 

to the behavior of many of the new synthetic materials of the 

elastomer and polymer type, e.g. polymethyl-methacrylate (Per- 

spex), polyethylene and polyvinyl chloride. The linear theory of 

micropolar elasticity is adequate to represent the behavior of such 

materials. For ultrasonic waves i.e. for the case of elastic vibra- 

tions characterized by high frequencies and small wavelengths, 

influence of the body microstructure becomes significant. This 

influence of microstructure results in development of new type 

of waves, not found in the classical theory of elasticity. Metals, 

polymers, composites, soils, rocks, concrete are typical media with 

microstructures. More generally, most of the natural and manmade 

materials including engineering, geological and biological media 

possess a microstructure. Eringen and Suhubi [1] and Suhubi 

and Eringen [2] developed the nonlinear theory of micro-elastic 

solids. Later Eringen [3–5] developed a theory for the special 

class of micro-elastic materials and called it the “linear theory 

of micropolar elasticity”. Under this theory, solids can undergo 

macro-deformations and macro-rotations. Marin and Marinescu 

[6] discussed asymptotic partition of total energy for the solutions 

of the mixed initial boundary value problem within the context of 
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the thermoelasticity of initially stressed bodies. Dost and Taborrok 

[7] presented the generalized thermoelasticity by using Green and 

Lindsay theory. A domain of influence theorem for microstretch 

elastic materials was discussed by Marin [8] . Chandrasekharaiah 

[9] developed a heat flux dependent micropolar thermoelasticity. 

Marin and Lupu [10] discussed harmonic vibrations in thermoelas- 

ticity of micropolar bodies. Kumar [11] investigated the reflection 

coefficient in micropolar viscoelastic generalized half-space. Kumar 

and Sharma [12] obtained the amplitude ratios from the stress 

free boundary in a micropolar thermoelastic half-space without 

energy dissipation. Sharma and Marin [13] studied reflection and 

transmission of waves from imperfect boundary between two 

heat conducting micropolar thermoelastic solids. Othman et al. 

[14] discussed the effect of initial stress and the gravity field on 

micropolar thermoelastic solid with microtemperatures. 

In classical dynamical coupled theory (CD) of thermoelasticity 

proposed by Biot [15] , the thermal and mechanical waves propa- 

gate with an infinite velocity, which is not physically admissible. 

The theory of coupled thermoelasticity extended by Lord–Shulman 

[16] and Green–Lindsay [17] by including thermal relaxation time 

in constitutive relations. These theories eliminate the paradox of an 

infinite velocity of heat propagation and termed generalized the- 

ories of thermoelasticity. These exist in the following differences 

between the two theories: 

1. Lord–Shulman (L–S) theory involves one thermal relaxation 

time of thermoelastic process ( τ 0 ). 

2. Green and Lindsay theory involve two thermal relaxations 

time ( τ0 , υ0 ) . 

3. L–S energy equation involves first and second time deriva- 

tives of strain, whereas the corresponding equation in the 

G–L theory needs only the first time derivative of strain. 

4. In the linear case, according to the approach of G–L theory 

the heat cannot propagate with a finite speed unless the 

stresses depend on the temperature velocity, whereas ac- 

cording to L–S theory the heat can propagate with a finite 

speed even though the stresses there are independent of the 

temperature velocity. 

5. The two theories are structurally different from one another, 

and one cannot be obtained as a particular case of the other. 

Applying the above theories of generalized thermoelasticity, 

several problems have solved by Ghosh and Kanoria [18] , Oth- 

man et al. [19] . A theory of the heat conduction in deformable 

bodies which depends upon two distinct temperatures, the con- 

ductive temperature and the thermodynamic temperature, have es- 

tablished by Chen and Gurtin [20] and Chen et al. [21,22] . To time- 

independent problems, the difference between these two distinct 

temperatures is proportional to the heat supply and in absence of 

any heat supply, these two-temperature are identical as Chen et 

al. [21] . For time-dependent situations and for wave propagation 

problems, in particular, the two-temperatures are in general dif- 

ferent, regardless of presence of a heat supply. Several problems 

with the two-temperature theory of thermo-elasticity have solved 

by Warren and Chen [23] , Youssef [24] , Abbas and Youssef [25] , 

Abbas and Zenkour [26] , Zenkour and Abouelregal [27] and Said 

and Othman [28] etc. 

Our main object in writing this paper is to present a micropo- 

lar thermoelastic medium with two temperatures in the context of 

Lord–Shulman (L–S) theory which includes one thermal relaxation 

time and Green–Lindsay (G–L) theory with two thermal relaxation 

times as well as the classical dynamical coupled (CD) theory. The 

governing equations of the problem were solved by using nor- 

mal mode analysis. The effect of the magnetic field, the rotation, 

and presence of an internal heat source on the physical quantities 

studied. 

2. Governing equations and formulation of the problem 

We consider an isotropic, homengenous and thermoelastic mi- 

copolar medium. The elastic medium is rotating with an angular 

velocity � = (0 , �, 0) All quantities will be functions of the time 

t and of the coordinates x and z . The components of the displace- 

ment and the micro-rotation vector will have the form 

u = (u, 0 , w ) , ϕ = (0 , ϕ 2 , 0) (1) 

We consider the elastic medium permeated into a magnetic 

field of strength H = (0 , H 0 + h, 0) , where H 0 and h are the initial 

and induced magnetic field. 

The system of governing equations of micropolar thermoelastic- 

ity with rotation and Lorentz force is given by [29, 30] : 

σi j, j + μ0 (J ∧ H) i = ρ[ ̈u i + { � ∧ (� ∧ u } i + (2 � + ˙ u ) i ] (2) 

ε i jk σ jk + m ji, j = ρ j[ ̈ϕ i + (� ∧ ˙ ϕ ) i ] (3) 

The constitutive laws are 

σi j = λe kk δi j + 2 μe i j + k 0 ( u j,i − ϕ r ε i jr ) − γ

(
1 + t 1 

∂ 

∂t 

)
(T − T 0 ) δi j 

(4) 

m i j = αϕ r,r δi j + βϕ i, j + γ1 ϕ j,i (5) 

The strains can be expressed in terms of the displacement u i as 

e i j = 

1 

2 

( u i, j + u j,i ) , e kk = 

∂u 

∂x 
+ 

∂w 

∂z 
, (6) 

In the above equations, a comma followed by a suffix denotes 

partial derivative with respect to the corresponding coordinates. 

The generalized heat conduction equation as [31] 

K 	,ii = ρC E ( t 0 + t 2 ) ̈T + ρC E ˙ T + γ T 0 

(
∂ 

∂t 
+ t 0 

∂ 2 

∂ t 2 

)
e −

(
1 + t 0 

∂ 

∂t 

)
Q 

(7) 

The relation between the conductive temperature and the ther- 

modynamic temperature is given by 

	 − T = δ	,ii (8) 

Due to application of initial magnetic field H 0 , there are results 

of an induced electric field E . The linearized equations of electro- 

magnetism of a slowly moving medium are [28] 

∇ ∧ H = J + ε 0 
∂E 

∂t 
, ∇ ∧ E = −μ0 

∂H 

∂t 
, ∇ · H = 0 , 

E = −μ0 ˙ u ∧ H (9) 

Expressing the components of the current density vector J in 

terms of displacement by eliminating the quantities E and H from 

Eq. (9) , we get 

J = 

(
−∂h 

∂z 
− μ0 ε 0 H 0 

∂ 2 w 

∂ t 2 
, 0 , 

∂h 

∂x 
+ μ0 ε 0 H 0 

∂ 2 u 

∂ t 2 

)
(10) 

Eqs. (2) and ( 7 ) are the field equations of the generalized ther- 

moelasticity of elastic solid, applicable to the classical coupled the- 

ory CD, L–S theory as well as G–L theory as follows [32] : 

(a) Equations of the coupled theory (CD), when t 1 = t 2 = t 0 = 0 . 

(b) Lord–Shulman (L–S) theory, when t 0 � = 0, t 1 = t 2 = 0 . 

(c) Green–Lindsay (G–L) theory, when t 1 , t 2 � = 0, t 0 = 0 . 

(d) The corresponding equations for the three theories without 

magnetic field from the above mentioned cases by taking 

H 0 = 0 . 

(e) The corresponding equations for the three theories without 

rotation from the above mentioned cases by taking � = 0 . 
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