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a b s t r a c t 

This paper reports the existence of more than one pseudo-orbit when simulating continuous nonlinear 

systems using a digital computer in a set-up different from the ones normally seen in the literature, that 

is, in a set-up where the step-size is not varied, the discretization scheme is kept the same as well as 

the initial conditions. Taking advantage of the roundoff error, a simple but effective method to deter- 

mine a lower bound error and the critical time for the pseudo-orbits is used and the connection to the 

maximum (positive) Lyapunov exponent is established considering the bit resolution and the computa- 

tional platform used for the simulations. To illustrate the effectiveness of the method and problems of 

using discretization schemes for simulating continuous nonlinear systems in a digital computer, the well- 

known Lorenz equations, the Rossler hyperchaos system, Mackey–Glass equation and the Sprott A system 

are used. The method can help the user of such schemes to keep track of the reliability of numerical 

simulations. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Numerical computation plays a key role in analysing the solu- 

tions of nonlinear dynamical systems [8,11,28,48] . Numerical ex- 

periments [42] have been used since the seminal work of Lorenz 

[25] in order to understand complex nonlinear dynamical systems 

that exhibit chaotic behaviour. As a result, researchers have been 

identifying chaotic behaviour [41] in various systems by analysing 

the generated numerical solutions. These solutions are obtained 

using discretization schemes available in popular software and 

computers easily accessible to most researchers. However, as stated 

in [28] , there are many published works in which the reliability of 

numerical results is not carefully verified. The same author states 

that “In the simple case of a dynamic discrete system (of Hénon 

map), there are doubts as to the nature of the computational re- 

sults: long unstable pseudo-orbits or strange attractors?”. 

At first sight the natural way to deal with the problem would 

be to borrow and adapt the results of earlier works on the lin- 

ear case. However, this approach should be used with care since 

there are important differences between the linear case and the 

nonlinear case. One of the first papers to deal with the problem 
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of roundoff errors for the linear case in a digital computer is [46] , 

where the author studies the effects of roundoff in the floating- 

point realization of a general linear discrete filter governed by a 

stable difference equation. Further works on this direction with 

the objective of understanding and minimizing the roundoff error 

are [14,32,36,37,50] just to mention a few. Although limit cycles 

have been reported due to the roundoff [4,13,32] , the basic idea 

was to design filter structures to reduce roundoff noise and coeffi- 

cient sensitivity, avoid overflow oscillations and quantization limit 

cycles when magnitude truncation is employed. The problem of 

structural instabilities for the linear continuous case was studied 

in [34] . These results are useful to understand some consequences 

of the roundoff error but their extension to the nonlinear case is 

not completely obvious. 

In the investigation of some of aforementioned problems in the 

context of nonlinear systems, Lorenz [26] coined the term “Compu- 

tational Chaos” while studying the chaotic behaviour of difference 

equations used to approximate a continuous system represented 

by a set of differential equations as the step-size is increased. Fur- 

ther results on the same subject can be found in [8,18,27,53] . Lao 

[18] , for instance, has introduced the concept of critical predictable 

time to provide a more precise description of computed chaotic 

solutions of nonlinear differential equations. The author has sug- 

gested that the computed solutions, using discretization schemes, 

can not lead to accurate long-term prediction of chaotic time-series 

beyond the critical predictable time. He has also pointed out that 
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two digitally computed chaotic outputs generated by different dis- 

cretization schemes differs after the critical predictable time even 

if the used initial conditions are exactly the same. In a similar 

way, Corless [5] points out four levels of abstraction when one is 

dealing with modelling: “the physical reality of the problem under 

study, the continuous mathematical model of that physical reality, 

the numerical discretization of that mathematical model, and the 

floating-point simulation of that discretization”. Regarding specifi- 

cally to nonlinear dynamics, Corless [5] is still more incisive when 

stating that “Results from one level may or may not transfer easily 

to another level, and in particular, even qualitative features may 

not be preserved in that transfer. Moreover, there is no inherent 

bias either way: in any change of level we can introduce or de- 

stroy chaos.”

Having in mind not the occurrence of different solutions due to 

the increase of the step-size or to the use of different discretiza- 

tion schemes but due to the numerical solution itself, Nepomu- 

ceno [39] has shown that a simple sequence of iterations of a well- 

known nonlinear system can reach a steady state value that is not 

the theoretical one. In other words, the sequence did not converge 

to the theoretical value due to numerical issues. In the same work, 

a method to calculate the propagation of error in the computa- 

tion of recursive function is presented. The investigation of prop- 

agation error is not a recent issue (See for instance [6,10,11] ) but, 

in fact, there are many works based on deterministic or statisti- 

cal tools that provide some confidence when simulating recursive 

functions. Analysing such functions, Nepomuceno [39] has calcu- 

lated the propagation of the error based on the evaluation of the 

sequence of arithmetic functions and Taylor expansion. Although, 

the results seem reasonable, the application of such technique is 

not practical for recursive functions with many terms, such as non- 

linear discrete models [3] , or discretization schemes for obtaining 

the numerical solutions for nonlinear differential equations when 

the goal is to measure or, at least, to estimate the error. 

In order to investigate the error in complex recursive functions, 

Nepomuceno and Martins [40] introduced an approach to evalu- 

ate a lower bound error based on the fact that although inter- 

val extensions [35] are mathematically equivalent, they may gen- 

erate different com puter simulation outcomes. The result of using 

multiple interval extensions is the introduction of a new concept, 

“multiple pseudo-orbits”, that differs from the general view that a 

simulation generated by iterating nonlinear systems exhibits only 

one pseudo-orbit. To compare the generated pseudo-orbits to the 

true one, Hammel et al. [11] have shown that the latter exists near 

a pseudo-orbit using mathematical analysis. In a somehow simi- 

lar context, this paper explores the lower bound error to the con- 

text of continuous nonlinear systems simulated using discretiza- 

tion schemes. The lower bound error, that is, an inferior limit for 

the error, has a direct consequence on the understanding of the so- 

lutions generated by nonlinear dynamical systems. By means of a 

very simple change in the equation to be simulated, that is, by ap- 

plying a distributive property, two different pseudo-orbits are pro- 

duced even when the initial conditions and step size are not var- 

ied. 

To further emphasize the main point of the present work, con- 

sider a recent work in which it is addressed the issue of obtaining 

chaotic solutions in a finite interval of time using symbolic com- 

putation, extremely high-order Taylor expansion and a super com- 

puter [22] . The author states that “ ... because Lorenz [26,27] fur- 

ther found that chaotic solutions are sensitive not only to initial 

conditions but also to numerical algorithms: different numerical 

algorithms with different time-steps may lead to completely dif- 

ferent numerical results of chaos”. The present paper goes beyond 

that, when it states that even when the initial conditions are ex- 

actly the same, the algorithm is not changed and the step time 

is kept unchanged, one can find multiple pseudo-orbits simply by 

changing the way the model is written. Instead of trying to give 

a full answer to question “which pseudo-orbit is more correct?”, 

guidelines are provided to help the user of discretization schemes 

to analyse the variety of numerical solutions and to establish a re- 

lationship between the different pseudo-orbits and the maximum 

(positive) Lyapunov exponent when possible. 

The rest of the paper is laid out as follows: In Section 2 , two 

discretization schemes are briefly reviewed. The proposed method 

based on the lower bound error is presented in Section 3 . To illus- 

trate this approach, examples using the well-known Lorenz equa- 

tions, the Rossler hyperchaos system, Mackey–Glass Equation and 

the Sprott A system are given in Section 4 . Section 5 presents the 

conclusions. 

2. Discretization schemes 

Two discretization schemes are now briefly reviewed. The first 

scheme is the well-known Runge–Kutta of 4th order, usually re- 

ferred to as RK4 [43] . Consider an initial value problem specified 

as follows: 

˙ x = f (t, x ) , x (t 0 ) = x 0 , (1) 

where x is some state variable (or output signal). 

With a step-size (or discretization step) h > 0 the RK4 can be 

expressed as 

x n +1 = x n + 

h 

6 

( k 1 + 2 k 2 + 2 k 3 + k 4 ) , (2) 

where 

K 1 = f n , 

K 2 = f 

(
t n + 

h 
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2 
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)
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K 3 = f 

(
t n + 
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2 

, x n + 
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2 
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)
, 

K 4 = f (t n +1 , n + hK 3 ) . (3) 

The second method investigated is the Monaco and Normand- 

Cyrot Discretization Scheme [33] . Let the dynamic system be 

˙ x = f (x ) , (4) 

where x = (x 1 , . . . , x m 

) ∈ R 

m are state variables, f ( ·) are (differen- 

tiable) functions. 

Here an alternative procedure for discretization of Eq. (4) as de- 

scribed in [2] is given. A discrete model of Eq. (4) can be written 

as 

x k +1 = g(x k , h ) , (5) 

where x k ∈ R 

m are the discrete state variable at time t = t 0 + kh 

and t 0 is the initial time. 

In [19,30] , the Monaco and Normand-Cyrot discretization 

scheme was obtained by the Lie exponential expansion of Eq. (4) as 

follows: 

x k +1 = x k + 

η∑ 

n =1 

h 

n 

n ! 
L n f (x k ) , (6) 

where η is the expansion order. The Lie derivative is given by: 

L f (x k ) = 

m ∑ 

j=1 

f j 
∂x 

∂x j 
, (7) 

where f j represents the j th component of the vector field. Higher 

order derivative orders can be calculated by: 

L f (x k ) = L f 
(
L n −1 

f 
(x ) k 

)
. (8) 

All simulations are performed on an IBM PC-compatible machine 

using Matlab R2016a or Fortran. All routines used in this work are 

available upon request. 
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