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a b s t r a c t 

We report the dynamics of a low dimensional fractional order forced LCR circuit using Chua’s diode. 

The stability analysis is performed for each segment of the piecewise linear curve of Chua’s diode and 

the conditions for the oscillation and double scroll chaos are obtained. The effect of fractional order on 

the bifurcation points are studied with the help of bifurcation diagrams. We consider both the deriva- 

tives of the systems current and voltage as fractional derivatives. When the order of the derivatives is 

decreased, the system exhibits interesting dynamical behavior. For instance, the value of the fractional 

order corresponding to the voltage is decreased, the chaotic regime in the system decreases. But in the 

case of current, the chaotic regime in the system increases initially and beyond a certain value of order, 

the chaotic regime decreases and extinguishes from the system. We found the lowest order for exhibiting 

chaos in the fractional order of the circuit as 2.1. For the first time, the experimental analogue of our pro- 

posed system is made by using the frequency domain approximation. The results are obtained from the 

experimental observations are compared with numerical simulations and found that they match closely 

with each other. The existence of chaos in the circuit is analyzed with the help of 0-1 test and power 

spectrum. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Study on nonlinear dynamical systems and their complex be- 

havior gained a great interest among the researchers for the past 

few decades [1–4] . Nevertheless, it is difficult to solve the dynam- 

ical systems by available analytical methods. Few analytical and 

several numerical methods are available depending on the spe- 

cific situation. Especially, solving a fractional order dynamical sys- 

tems are more complicated [5] . The equations representing frac- 

tional order dynamical system involve differentiation and integra- 

tion of fractional order calculus. Having a history of 300 years, the 

fractional order calculus (FoC) was first referred by Leibniz and 

L’Hospital [6,7] and developed later on by many contributions. In 

recent years, the FoC has a variety of applications as it allows us to 

describe or model a real world dynamical systems more precisely 

than the classical integer order calculus. Studies reveal that real 

world dynamical systems are generally in fractional orders [8–11] . 

With its recent developments such as approximation method, the 

FoC has broadened its application area. To mention a few, physics, 

chemistry, engineering [12,13] , electrical engineering [8,11,14] , con- 
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trol systems [9,10,15] , robotics [16] , signal processing [17] , chemi- 

cal mixing [18] , bio-engineering [19] , electronic circuits [20,21] and 

mechanical oscillator [22] . 

Numerous studies are available on fractional order nonlinear 

systems [23–26] . Radwan et al. [27] studied, the stability of com- 

mensurate and incommensurate fractional order. A general proce- 

dure for studying the stability of a system with many fractional 

elements is also given. Ahmad et al. [28] investigated chaotic be- 

havior in autonomous nonlinear models of fractional order. The 

linear transfer function approximations of the fractional integra- 

tor block are calculated for a set of fractional orders, based on 

frequency domain arguments, and the resulting equivalent models 

are studied. An electronic circuit model of tree shape to realize the 

fractional-order operator proposed by Chen Xiang Rong et al. [29] . 

Jia Rong et al. [30] reported fractional-order Lorenz system. They 

analyzed the system using the frequency-domain approximation 

method and the time-domain approximation method and reported 

its chaotic dynamics, when the order of the fractional-order sys- 

tem is varied. Chao Luo Rong et al. [31] investigated a fractional- 

order complex Lorenz system and its dynamical behaviors. The 

synchronization scheme in fractional-order complex Lorenz sys- 

tems is also presented. Razminia Rong et al. [32] present an ac- 

tive control methodology for controlling the chaotic behavior of a 
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fractional order version of Rössler system. Active synchronization 

of two chaotic fractional order Rössler systems is also investigated. 

Gejji Rong et al. [33] , observed that inclusion of delay changes 

chaotic behavior in fractional-order Chen system. Ivo Petráś pro- 

posed a new fractional-order chaotic system based on the concept 

of Volta’s system, has simple structure and can display a double- 

scroll attractor [34] . Recently, Wang Rong et al. [35] have shown 

the existence of chaos in fractional order Murali–Lakshamanan- 

Chua’s (FoMLC) system by solving it numerically. 

One way of solving the differential equation is through their 

analogue simulation of electronic circuits. Such study requires sim- 

ple circuits that are available even in an undergraduate laboratory 

and off the shelf electronic circuit components. Analogue electronic 

simulation studies provide a quick scan of the entire parameter 

space in real time. Further, as they are purely RC based circuits 

the drawbacks of LC networks are done away with. Their simplicity 

and ease of implementation have led to not only validation of past 

theoretical predictions but also discovery of many new phenom- 

ena. The experimental study of chaos using nonlinear electronic 

circuits, is being an active topic of research, it could be extended 

to solve fractional order differential equations. Motivates by the 

above studies, in this manuscript we report the chaotic dynamics 

of a low dimensional electronic circuit in the frame of FoC. For the 

purpose, we consider the forced LCR circuit using piecewise lin- 

ear nonlinearity [36–38] . The dynamics of our proposed circuit has 

been studied in a different genre like the analytical solution and 

cellular neural/nonlinear networks [39–41] , etc. 

Studying the dynamics of our system in the platform of frac- 

tional order, have become a possibility in nonlinear science such 

as in control, synchronization and secure communications. How- 

ever, in the present work, a detailed analysis is made both numer- 

ically and experimentally in the laboratory. The stability condition 

for the existence of chaos, double scroll attractor and shifting of bi- 

furcation points as a function of the order of the system are inves- 

tigated in detail. We also study the system dynamics by consider- 

ing both variable (current and voltage) as the fractional derivatives. 

Very interesting dynamical transitions are observed, when the sys- 

tem is made as an incommonsurate fractional order and when the 

system order is decreased from value one. For example, the or- 

der corresponding to the circuit voltage/current is decreased, the 

chaotic regime decreases (as a function of the amplitude of the ex- 

ternal forcing). The system losses its chaotic (regime) behavior for 

a certain value of the fractional order. It is clearly evident from 

the bifurcation diagram. We define two bifurcation points as first 

bifurcation point and last bifurcation point which are correspond- 

ing to where the bifurcation starts and ends respectively. As a 

consequence of decreasing the fractional order, the nature of the 

chaotic regime, these two bifurcation points approaches each or- 

der and ultimately meets each other. Interestingly, we find that 

this decrement of chaotic behavior follows a polynomial of order 

four. Whereas in the case of derivative corresponding to the cur- 

rent is decreased, initially, the two bifurcation points move away 

from each other and afterward they move towards each other. Con- 

sequently, the chaotic regime in the system initially increases and 

then it decreases to zero. We find that the chaos exists in the sys- 

tem up to the order of 2.1. As a whole, the systems’ order is 2.1 

and to the best of our knowledge, this must be the lowest order 

for exhibiting chaos in a fractional second-order nonautonomous 

nonlinear systems. 

In this work, for the first time an analogue circuit is constructed 

to our forced series LCR circuit and results obtained are matching 

with its numerical counter part. In order to confirm the chaotic be- 

havior of the circuit, the experimental data was analyzed using 0- 

1 test, FFT spectrum, etc. The proposed system is found to exhibit 

all the dynamical behavior exhibited by the integer order original 

circuit. The experimental results obtained and are confirmed with 

numerical simulation of the normalized circuit equations. The pa- 

per is configured as follows. The theory of fractional order deriva- 

tives and integrals are discussed in Section 2 . Section 3 deals with 

the implementation of our proposed circuit, stability analysis, pe- 

riod doubling bifurcation and confirmation test of chaos. The dy- 

namics of the system as a function of fractional order is studied in 

Section 4 . Section 5 concludes the work. 

2. Fractional derivatives and integrals 

The fractional calculus is a generalization of integration and dif- 

ferentiation to non-integer order fundamental operator a D 

q 
t . The 

continuous integro-differential operator is defined as 

a D 

q 
t = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

d q 

dt q 
q > 0 , 

1 q = 0 , ∫ t 
0 (dτ ) q q < 0 , 

Many definitions are available for fractional derivatives and inte- 

grals. However, the Grünwald–Letnikov, the Riemann–Liouville and 

the Caputo definitions [10,18,42] are the frequently used ones. Out 

of the above Riemann–Liouville is found to be the simplest defini- 

tion to use which is given by 

0 D 

q 
t f (t) = 

1 

�(n − q ) 

d n 

dt n 

∫ t 

0 

f ( τ ) 

( t − τ ) q −n +1 
dτ, (1) 

where �( · ) is Euler’s Gamma function and (n − 1) ≤ q < n [18] . 

When the fractional integral begin at t = 0 and all the initial con- 

ditions are being zero, the Laplace transform of the Riemann–

Liouville fractional derivative is 

L 

{
d q f (t) 

dt q 

}
= S q L { f (t) } . (2) 

The fractional integral operator of order q is represented by the 

transfer function F (s ) = 

1 
S q 

in the frequency domain. The defini- 

tions of fractional integral do not allow direct implementation of 

the operator of complicated systems. It is necessary to develop the 

approximations for the fractional operators using the standard in- 

teger order operators to analyze the systems. Linear transfer func- 

tion approximations of the fractional integrator for the orders from 

0.1 to 0.9, based on frequency domain arguments, and the resulting 

equivalent models are given in [20,21] . We adopt this approxima- 

tion to design our circuit. 

3. Circuit implementation 

Lot of studies are available in the literature about the forced 

series LCR circuit. The equation of motion of the oscillator is well 

known and it is explored in electrical circuits in the laboratory 

[39,43,44] . In the present section, we consider the original forced 

series LCR circuit [38] equation to convert it into fractional order. If 

we consider a fractional order model for each electrical element in 

the circuit realization, we can write a more general circuit equa- 

tion. Here, the fractional order forced series LCR circuit equation 

becomes, 

C 
d q 1 v c 

dt 
= i L − h (v c ) , 

L 
d q 2 i L 

dt 
= −i L R − R s i L − v C + F sin (�t) . (3) 

where, 

h (v c ) = 

{ 

G b v c + G a − G b v c ≥ B P , 

G a v c | v c | ≤ B P , 

G b v c − G a + G b v c ≤ −B P , 

Here q 1 and q 2 are the fractional orders of real electrical elements 

and the term h ( v c ) represents mathematical form of the piecewise 
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