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In this paper, we investigate the dynamics of a diffusive predator–prey system with Crowley–Martin func- 

tional response and delay subject to Neumann boundary condition. More precisely, we study the stability 

and Turing instability of positive equilibrium for non-delay system, instability and Hopf bifurcation in- 

duced by time delay for delay system. In addition, by the theory of normal form and center manifold 

method, we derive conditions for determining the bifurcation direction and the stability of the bifurcat- 

ing periodic solution. 
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1. Introduction 

One of the dominant theme in both ecology and mathematical 

ecology is predator-prey model. It exists universally and is impor- 

tant with other biological systems. Many researchers have studied 

it and derived some important results [1–6] . 

In predator-prey models, the functional response of predators 

to prey density is essential. It represents a predator’s per capita 

feeding rate on prey. Different functional responses enrich the dy- 

namics of predator-prey systems. In ecology, functional responses 

may affect by prey escape ability, structure of the prey habitat 

and predator hunting ability [7,8] . Functional responses can be di- 

vided into types: prey-dependent (functional response is a func- 

tion of only prey’s density) and prey-predator-dependent (func- 

tional response is a function of both prey and predator’s den- 

sity). For example, Holling I–III [9] are prey-dependent functional 

responses and Beddington–DeAngelis [10] , Crowley–Martin [11] , 

Hassel–Varley [12] prey-predator-dependent functional responses. 

Some researchers have considered predator-prey models 

with prey-dependent functional responses, and obtained some 

useful result [13–16] . In recently, some studies suggest that 

a more suitable general predator–prey model should be with 

prey-predator-dependent functional responses [17–21] . Skalski 

and Gilliam [22] indicted that three prey-predator-dependent 

functional responses (Beddington–DeAngelis, Crowley–Martin, and 

Hassell–Varley) can provide better description of predator feeding 

over a range of predator–prey abundances present. In particular, 
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Beddington–DeAngelis or Hassell–Varley model is suitable for the 

case that predator feeding rate becomes independent of predator 

density at high prey density and Crowley–Martin model suitable 

for the case that predator feeding rate is decreased by higher 

predator density even when prey density is high. 

In [23] , Tripathi et al. studied a predator-prey model with 

Crowley–Martin functional response and time delay, that is { 

dU 
dT 

= AU − BU 

2 − CUV 
A 1 + B 1 U+ C 1 V + B 1 C 1 UV 

, 

dV 
dT 

= 

F U(T −τ̄ ) V (T −τ̄ ) 
A 1 + B 1 U(T −τ̄ )+ C 1 V (T −τ̄ )+ B 1 C 1 U(T −τ̄ ) V (T −τ̄ ) 

− DV − EV 

2 . 
(1.1) 

with the initial conditions U(0) = U 0 > 0 , V (0) = V 0 > 0 , which are 

biologically meaningful. Here U and V represent prey and predator 

densities at time t respectively. All the parameters in the model are 

positive. To know the meaning of these parameters, one can refer 

to [23] . This model considers predator’s intra-species competition, 

that is the death rate of predator D + EV is a function of densities 

increase. As predator densities increase, the death rate of predator 

increases. As predator densities approaches to zero, the death rate 

approaches to D (a constant). In, [23] the authors investigate the 

permanence, non-permanence, local asymptotic stability and global 

asymptotic stability of equilibra for system (1.1) . 

For simplicity, taking U = Au/B, V = v , T = t/A and τ τ̄ /A, then 

(1.1) can be rewritten in the following form { 

du 
dt 

= u − u 

2 − αu v 
1+ au + bv + cu v , 

dv 
dt 

= s 
(

βu (t−τ ) v (t−τ ) 
1+ au (t−τ )+ bv (t−τ )+ cu (t−τ ) v (t−τ ) 

− v − e v 2 
)
. 

(1.2) 

where 
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a = 

AB 1 

A 1 B 

, b = 

C 1 
A 1 

, c = 

AB 1 C 1 
A 1 B 

, α = 

C 

AA 1 

, s = 

D 

A 

, 

e = 

E 

D 

, β = 

F A 

A 1 BD 

. 

In the real world, predators and their preys distribute inhomo- 

geneous in different spatial location at time t . And they will move 

or diffuse to areas with smaller population concentration. So in 

more realistic ecological models, the diffusion should be consid- 

ered. Assume that the region � is closed, with no prey and preda- 

tor species entering and leaving the region at the boundary. We 

consider spatial changes in both the species, and a spatial model 

analogue of the model (1.2) presented takes the following form: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ u (x,t) 
∂t 

= d 1 �u + u − u 

2 − αu v 
1+ au + bv + cu v , x ∈ (0 , �) , t > 0 

∂ v (x,t) 
∂t 

= d 2 �v + s 
(

βu (t−τ ) v (t−τ ) 
1+ au (t−τ )+ bv (t−τ )+ cu (t−τ ) v (t−τ ) 

− v − e v 2 
)
, 

x ∈ (0 , �) , t > 0 

u x (0 , t) = v x (0 , t) = 0 , u x (�, t) = v x (�, t) = 0 , t > 0 

u (x, θ ) = u 0 (x, θ ) ≥ 0 , v (x, θ ) = v 0 (x, θ ) ≥ 0 , x ∈ [0 , �] , 
θ ∈ [ −τ, 0] , 

(1.3) 

In the rest of this paper, we will assume � = lπ, where l > 0. 

The rest of this paper is organized as follows. In Section 2 , 

we study the dynamics of the non-delay system, including stabil- 

ity and Turing instability of positive equilibrium. In Section 3 , we 

study the effect of delay on the model including stability and Hopf 

bifurcation at positive equilibrium. In Section 4 , we give some nu- 

merical simulations to illustrate the theoretical results. 

2. Stability analysis of the non-delayed system 

Without delay, system (1.3) becomes ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂t 

= d 1 �u + u − u 

2 − αu v 
1+ au + bv + cu v , x ∈ (0 , lπ) , 

t > 0 , 
∂v 
∂t 

= d 2 �v + s 
(

βu v 
1+ au + bv + cu v − v − e v 2 

)
, x ∈ (0 , lπ) , 

t > 0 , 

u x (0 , t) = v x (0 , t) = 0 , u x (lπ, t) = v x (lπ, t) = 0 , t > 0 , 

u (x, 0) = u 0 (x, t) ≥ 0 , v (x, 0) = v 0 (x, t) ≥ 0 , x ∈ [0 , lπ ] . 

(2.1) 

Obviously, system (2.1) has two boundary equilibria E 0 = (0 , 0) 

and E 1 = (1 , 0) . In [23] , authors have studied the existence of posi- 

tive equilibrium by Descartes rule of sign. In the following, we just 

suppose system (2.1) has a positive equilibrium E ∗(u ∗, v ∗) . 

2.1. Local stability analysis of the model without diffusion 

For system (2.1) without diffusion, the Jacobian matrix at 

E ∗(u ∗, v ∗) is 

J = 

(
a 1 −a 2 
sb 1 −sb 2 

)
, 

where 

a 1 = 

αu ∗v ∗( a + cv ∗) 
( 1 + au ∗ + bv ∗ + cu ∗v ∗) 2 

− u ∗, 

a 2 = 

αu ∗( 1 + au ∗) 

( 1 + au ∗ + bv ∗ + cu ∗v ∗) 2 
> 0 , 

b 1 = 

v ∗β( 1 + bv ∗) 
( 1 + au ∗ + bv ∗ + cu ∗v ∗) 2 

> 0 , 

b 2 = v ∗

(
e + 

βu ∗( b + cu ∗) 

( 1 + au ∗ + bv ∗ + cu ∗v ∗) 2 

)
> 0 . (2.2) 

The characteristic equation of system (2.1) without diffusion corre- 

sponding to P = (u ∗, v ∗) is 

λ2 − tr 0 λ + �0 = 0 . (2.3) 

The roots of Eq. (2.3) are given by λ1 , 2 = 

1 
2 [ tr 0 ±

√ 

�0 ] . When 

tr 0 = a 1 − sb 2 < 0 and �0 = s (a 2 b 1 − a 1 b 2 ) > 0 , 

the roots of Eq. (2.3) have negative real parts. Make the following 

hypothesis 

(H 1 ) a 2 b 1 − a 1 b 2 > 0 . 

If (H 1 ) holds, then E ∗(u ∗, v ∗) is locally asymptotically stable if and 

only if a 1 − sb 2 < 0 . Meanwhile, if a 1 > 0 when s near a 1 / b 2 , 

Eq. (2.3) has a pair of complex eigenvalues α( s ) ± i ω( s ), where 

α(s ) = 

1 

2 

(a 1 − sb 2 ) , ω(s ) = 

1 

2 

√ 

s (a 1 b 2 − a 2 b 1 ) . 

and 

α(a 1 /b 2 ) = 0 , α′ (a 1 /b 2 ) = −b 2 / 2 , ω(a 1 /b 2 ) > 0 . 

By the Poincare-Andronov-Hopf Bifurcation Theorem [24] , we 

know that system (2.1) without diffusion undergoes Hopf bifurca- 

tion at P (u 0 , v 0 ) when s = a 1 /b 2 . 

Summarizing the discussion above, we have the following con- 

clusions. 

Theorem 2.1. Suppose (H 1 ) holds, for system (2.1) without diffusion 

the following statements are true. 

(i) If a 1 − sb 2 < 0 , then the equilibrium P (u ∗, v ∗) is locally asymp- 

totically stable; 

(ii) If a 1 > 0, system (2.1) without diffusion undergoes Hopf bifur- 

cation at P (u ∗, v ∗) when s = a 1 /b 2 . 

2.2. Turing instability and Hopf bifurcation 

For system (2.1) with diffusion, we can easily get characteristic 

equation at E ∗(u ∗, v ∗) 

λ2 − tr n λ + �n (s ) = 0 , n = 0 , 1 , 2 , · · · , (2.4) 

where {
t r n = t r 0 − n 2 

l 2 
(d 1 + d 2 ) , 

�n = �0 − n 2 

l 2 
(d 2 a 1 − sd 1 b 2 ) + d 1 d 2 

n 4 

l 4 
, 

(2.5) 

and the eigenvalues are given by 

λ(n ) 
1 , 2 

(s ) = 

t r n ±
√ 

t r 2 n − 4�n 

2 

, n = 0 , 1 , 2 , · · · . (2.6) 

Obviously, if a 1 − sb 2 < 0 , then tr n ≤ tr 0 < 0 for n = 0 , 1 , 2 , · · · . 

Suppose (H 1 ) holds, then �0 = s (a 2 b 1 − a 1 b 2 ) > 0 , and if s ≥ d 2 a 1 
d 1 b 2 

also holds, then �n ≥ �0 > 0 for n = 0 , 1 , 2 , · · · . 

Denote 

s ∓ = 

d 2 

b 2 
2 
d 1 

[ 
−( a 1 b 2 − 2 a 2 b 1 ) ∓ 2 

√ 

a 2 b 1 ( a 1 b 2 − a 2 b 1 ) 

] 
(2.7) 

z ∓ = 

1 

2 d 1 d 2 

[ 
d 2 a 1 − sd 1 b 2 

∓
√ 

(d 2 a 1 − sd 1 b 2 ) 2 − 4 d 1 d 2 s (a 2 b 1 − a 1 b 2 ) 
] 
, (2.8) 

and 

σ = 

1 

a 1 b 2 

[ 
2 a 2 b 1 − a 1 b 2 − 2 

√ 

a 2 b 1 ( a 2 b 1 − a 1 b 2 ) 

] 
. (2.9) 

Under (H 1 ) , the following relationship about 
a 1 
b 2 

, 
d 2 a 1 
d 1 b 2 

and s ± hold. { 

if d 1 
d 2 

< σ, then 0 < 

a 1 
b 2 

< s − < 

d 2 a 1 
d 1 b 2 

< s + , 

if d 1 
d 2 

> σ, then 0 < s − < 

a 1 
b 2 

< 

d 2 a 1 
d 1 b 2 

< s + . 
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