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In this paper, using a new method provided in [4] we characterize all algebraic traveling wave solutions of 

the fourth order Boussinesq equation, the nonlinear Klein–Gordon equation and a generalized Benjamin–

Bona–Mahony equation. 
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1. Introduction and statement of the main results 

Looking for traveling waves to nonlinear evolution equations 

has long been the major problem for mathematicians and physi- 

cists. These solutions may well describe various phenomena in 

physics and other fields and thus they may give more insight into 

the physical aspects of the problems. Many methods for obtaining 

traveling wave solutions have been established [2,3,7,8,13,15] with 

more or less success. When the degree of the nonlinearity is high 

most of the methods fail or can only lead to a kind of special solu- 

tion and the solution procedures become very complex and do not 

lead to an efficient way to compute them. 

In this paper we first focus on the nonlinear Klein–Gordon 

equation [6,10–12] with quadratic nonlinearity terms 

u tt − u xx + αu − βu 

2 = 0 (1) 

where α, β ∈ R with β � = 0. The nonlinear Klein–Gordon equation 

appears in many types of nonlinearities and play a significant role 

in many scientific applications such as solid state physics, nonlin- 

ear optics and quantum field theory. 

We also focus on the fourth order Boussinesq equation, which 

is a nonlinear partial differential equation of the form 

u tt − a 2 u xx − b(u 

2 ) xx + u xxxx = 0 . (2) 
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where a, b ∈ R with b � = 0. This equation was introduced by Boussi- 

nesq to describe the propagation of long waves in shallow wa- 

ter. It arises in other physical applications such as nonlinear lat- 

tice waves, iron sound waves in a plasma and in vibrations in a 

nonlinear string (see, [5,6,10–12,16–19] ). 

Finally, we also focus on the modified Benjamin–Bona–Mahony 

equation 

u t + αu x + β(u 

2 ) x − γ u xxt = 0 (3) 

where α, γ , β ∈ R with β � = 0. The Benjamin–Bona–Mahony equa- 

tion was introduced by Benjamin, Bona and Mahony in [1] as an 

improvement of the KdV equation for modeling long surface grav- 

ity waves of small amplitude. It was introduced before by Pere- 

grine in [9] in the study of undular bores. 

There are various approaches for constructing traveling wave 

solutions, but these methods do not characterize completely when 

a given partial differential equation has a traveling wave solution 

in the sense that if they do not succeed in finding a traveling 

wave solution this does not mean that the system does not have 

a traveling wave solution. However, in [4] the authors gave a tech- 

nique to prove the existence of traveling wave solutions for gen- 

eral n th order partial differential equations by showing that travel- 

ing wave solutions exist if and only if the associated n -dimensional 

first order ordinary differential equation has some invariant alge- 

braic curve. 
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More precisely, the traveling wave solutions of the partial dif- 

ferential Eqs. (1) –(3) are particular solutions, defined for all s ∈ R , 

of the form u = u (x, t) = U(x − ct) . We will see that in the three 

cases U ( s ) satisfies the differential equation 

U 

′′ = F (U, U 

′ ) , (4) 

where F is a smooth map, U ( s ) and the derivatives are taken with 

respect to s and the parameter c is called the speed of the traveling 

wave solution. Moreover, U ( s ) satisfies the boundary conditions 

lim 

s →−∞ 

U(s ) = A and lim 

s →∞ 

U(s ) = B, (5) 

where A and B are solutions, not necessarily different, of 

F (u, 0 , 0) = 0 . 

We say that u (x, t) = U(x − ct) is an algebraic traveling 

wave solution if U ( s ) is a nonconstant function that satisfies 

(4) and (5) and there exists a polynomial p ∈ R [ z, w ] such that 

p(U(s ) , U 

′ (s )) = 0 . 

We recall that for irreducible polynomials we have the follow- 

ing algebraic characterization of invariant algebraic curves: Given 

an irreducible polynomial of degree n , g = g(x, y ) , we have that 

g = 0 is an invariant algebraic curve for the system x ′ = P = P (x, y ) , 

y ′ = Q = Q(x, y ) for P, Q ∈ C [ x, y ] , if there exists a polynomial K = 

K(x, y ) of degree at most n − 1 , called the cofactor of g such that 

P 
∂g 

∂x 
+ Q 

∂g 

∂y 
= Kg. 

The main result that we will use is the following theorem, see 

[4] for its proof. 

Theorem 1. The partial differential Eqs. (1) –(3) have an algebraic 

traveling wave solution with respect to c if and only if the first or- 

der differential system {
y ′ 1 = y 2 , 
y ′ 2 = G c (y 1 , y 2 ) , 

(6) 

where 

G c (y 1 , y 2 ) = F (y 1 , y 2 ) 

has an invariant algebraic curve containing the critical points ( A , 

0) and ( B , 0) and no other critical points between them. 

The main result is, with the techniques in [4] , obtain all alge- 

braic traveling wave solutions of Eqs. (1) –(3) . 

Theorem 2. System (1) has an algebraic traveling wave solution if 

and only if c 2 � = 1, α � = 0 . The traveling wave solution is 

u (x, t) = 

3 α

2 β

(
1 − tanh 

2 

(√ −a 

2 

(√ 

3 κ ± (x − ct) 
)))

, κ ∈ R 

when α(c 2 − 1) < 0 being a = α/ (c 2 − 1) , and 

u (x, t) = 

α

2 β

(
−1 + 3 tanh 

2 

(√ 

a 

2 

(√ 

3 κb ± (x − ct) 
)))

, κ ∈ R 

when α(c 2 − 1) > 0 , being a = α/ (c 2 − 1) and b = β/ (c 2 − 1) . 

The proof of Theorem 2 is given in Section 3 . 

Theorem 3. System (2) has the algebraic traveling wave solution 

u (x − ct) = 

c 2 − a 2 

2 b 

+ 

a 

2 b 

(
−2 + 3 tanh 

2 

(√ 

a 

2 

(√ 

3 κ2 b ± (x − ct) 
)))

, 

where a = 

√ 

(c 2 − a 2 ) 2 − 4 bκ1 , κ1 , κ2 ∈ R with κ1 satisfying (c 2 −
a 2 ) 2 − 4 bκ1 > 0 . 

The proof of Theorem 3 is given in Section 4 . 

Theorem 4. System (3) has an algebraic traveling wave solution if 

and only if γ c � = 0 and the algebraic traveling wave solution is 

u (x − ct)= 

c−α

2 β
+ 

a 

2 b 

(
−2 + 3 tanh 

2 

(√ 

a 

2 

(√ 

3 κ2 b ± (x − ct) 
)))

, 

where a = 

√ 

(α − c) 2 + 4 βκ1 , b = − β
γ c , κ1 , κ2 ∈ R with κ1 satisfying 

(α − c) 2 + 4 βκ1 > 0 . 

The proof of Theorem 4 is given in Section 5 . For related results 

in the literature computing traveling wave solutions for variants of 

these systems but with other methods not being algebraic conclu- 

sive, see for instance [14] and the references therein. 

2. Preliminary result 

In this section we consider the general form that system (6) can 

have in each of the cases of Theorems 2 –4 . We study when it has 

an invariant curve passing through the singular points of the sys- 

tem and defining global solutions. Moreover we provide the form 

of these global solutions. The results in this section will be used in 

the proofs of Theorems 2 –4 . 

Consider system 

x ′ = y, y ′ = −ax + bx 2 , (7) 

where a, b ∈ R with b � = 0. Note that system (7) has the algebraic 

invariant curve 

g(x, y ) = 

y 2 

2 

+ a 
x 2 

2 

− b 
x 3 

3 

= 0 . (8) 

All solutions of (7) are on g(x, y ) = g for g ∈ R (note that g ( x, y ) is 

a first integral of system (7) ). So this curve is the only irreducible 

one. We search for constants g such that g(x 0 , 0) = g being ( x 0 , 0) 

a singular point of system (7) . 

We first consider the case a = 0 . In this case the zeroes of y ′ 
are on x = 0 and the unique possible value of g is g = 0 . We thus 

have to solve 

y 2 

2 

− b 
x 3 

3 

= 0 

in y and we obtain 

y = ±
√ 

2 bx 3 

3 

. 

Since y (s ) = x ′ (s ) , solving the linear differential equation 

dx (s ) 

ds 
= ±

√ 

2 bx 3 

3 

the solutions are of the form 

x (s ) = 

12 

2 bs 2 ± 2 

√ 

6 b sκ + 3 κ2 
, κ ∈ R . 

Note that they are never global, so in this case there are no global 

solutions. 

Assume now that a � = 0. In this case the zeroes of y ′ are on 

x = 0 and x = a/b. So the unique possible values of g are g = 0 and 

g = 

a 3 

6 b 2 
. We will consider both cases separately. 

In the first case when g = 0 we have that solving 

y 2 

2 

+ a 
x 2 

2 

− b 
x 3 

3 

= 0 

in y we obtain 

y = ±
√ 

2 bx 3 

3 

− ax 2 . 
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