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a b s t r a c t 

In this paper we analyze a three level trophic chain model, considering a logistic growth for the lowest 

trophic level, a Lotka–Volterra and Holling type II functional responses for predators in the middle and 

in the cusp in the chain, respectively. The differential system is based on the Leslie–Gower scheme. We 

establish conditions on the parameters that guarantee the coexistence of populations in the habitat. We 

find that an Andronov–Hopf bifurcation takes place. The first Lyapunov coefficient is computed explicitly 

and we show the existence of a stable limit cycle. Numerically, we observe a strange attractor and there 

exist evidence of the model to exhibit chaotic dynamics. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the dynamic of the ecosystems, the formulation of many 

mathematical models with different interaction terms, including 

predation, competition, mutualism, like the trophic chains and 

other ecological models, have defined a new direction for the re- 

search in mathematical ecology (see Refs. [1,2,4,5] ). For any trophic 

system, the most important state is the coexistence of the species 

in a cycle. According to studies of ecosystem models, in nature the 

only cycles that exist and remain are those that are stable from the 

ecological point of view, this means that they must be insensitive 

to perturbations of external elements [2] . Thus, an ecologically sta- 

ble cycle must be isolated and mathematically must correspond to 

a limit cycle in the system of differential equations in the model 

of a trophic chain [6] . In fact, the existence of at least one sta- 

ble limit cycle gives a succesfull explanation about communities 

in which it has been observed that populations oscillate periodi- 
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cally (see Refs. [3,7,8] ), independent of external conditions. There 

are several papers dedicated to search limit cycles in different eco- 

logical models. For example, Sunaryo et al. [9] , study the existence 

of limit cycles in a tritrophic chain with Lotka–Volterra functional 

response for the middle predator, and a Holling type-III functional 

response for the top predator. Upadhyay and Raw [10] , examine the 

local and global stability of a trophic chain model with functional 

responses of Holling type IV for the interaction between species. 

The existence of simultaneous periodic orbits bifurcating from two 

zero-Hopf equilibria in a tritrophic chain model with functional re- 

sponses of Holling type III was reported in [11] . Moreover, an ana- 

lytical study of a triple Hopf bifurcation in a tritrophic food chain 

model with Holling type II functional responses was reported in 

[12] . For more details about food chain and Holling functional re- 

sponses see the Appendix A . 

In this paper, we analyze a three level trophic chain model 

where the lowest trophic level grows with a logistic equation in 

absence of the predators. We also consider that the functional 

response for the predator in the middle of the chain is Lotka–

Volterra type and the functional response for the predator at the 

top of the chain is Holling type II. Additionally, the dynamic of the 

http://dx.doi.org/10.1016/j.chaos.2016.12.011 
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predator in the cusp of the chain is considered in the Leslie–Gower 

scheme, (see Ref. [13] ). Denoting by X ( τ ), Y ( τ ) and Z ( τ ) the popu- 

lation densities of the three species, respectively, the model in this 

work is represented by the following system of nonlinear ordinary 

differential equations 

dX 

dτ
= ρX 

(
1 − X 

k 

)
− a 1 X Y, 

dY 

dτ
= ca 1 X Y − dY − a 2 Y Z 

Y + b 2 
, 

dZ 

dτ
= σZ 2 − βZ 2 

Y + b 2 
, (1.1) 

where a 1 , a 2 , b 2 , c, d, β , σ , ρ and k are positive parameters. The 

ecological meaning of each of these constants will be given in the 

next section. 

The outline of this paper is as follows. In Section 2 we de- 

scribe the three level trophic chain we shall consider. The anal- 

ysis of the local stability at the equilibrium points is carried out 

in Section 3 and the analysis of Hopf bifurcation in Section 4 . The 

Section 5 is devoted to the numerical analysis of our results, in- 

cluding the detection of the limit cycle with its phase portrait and 

its time series graphs, the evidence of a strange attractor and the 

degeneracy of the Hopf bifurcation. A concluding summary of our 

results comprises the last Section 6 . 

2. Ecological description model 

The first equation of the model (1.1) describes the change in 

population density of the prey and is given by its own growth 

minus the rate at which preys are consumed by the first preda- 

tor. The constant ρ is the intrinsic growth rate of the population 

of preys and k is the carrying capacity of the medium to sustain 

its population. We assume that, in the absence of the two preda- 

tors, the prey population grows with a logistic equation limited 

by the carrying capacity k . The interaction term −a 1 XY says that 

the rate of predation upon the preys is proportional to the rate 

at which the predator Y and the prey X find each other (Lotka–

Volterra scheme). The second equation of 1.1 describes the change 

in population density of predators Y , in which the first term rep- 

resents its growth and the constant c is the conversion factor of a 

prey into a predator. The second term is the rate of natural mortal- 

ity of predators in absence of preys and the third term is the rate 

decreasing the predator population Y by encounters with preda- 

tor population Z (modeled with Holling functional response type 

II).The parameter a 2 is interpreted as the speed that the preda- 

tor Z have an encounter with a predator Y per unit of density of 

predators Y . The ratio b 2 / a 2 is the average time in the processing 

of a meal for the predator Z . Finally, the first term of the third 

equation expresses the growth in population density of predators 

Z , with σ as its growth rate. The second term is the rate of mor- 

tality in a Leslie–Gower scheme, as in the model studied in [13] , 

where b 2 represents the residual loss of the predators due to the 

shortage of their favorite food. This last consideration, is based on 

the idea that the reduction of predator population, has a reciprocal 

relationship with the per capita availability of their favorite food, 

their ability charge is set by the environmental resources and is 

proportional to the abundance of their favorite food, here β is the 

ratio of intrinsic growth of the population divided by the conver- 

sion factor of the predator Y into a predator Z . In following section 

is carried out the analysis of the stability at the equilibrium points 

of the system (1.1) and its ecological interpretations. 

3. Equilibrium points and its local stability 

For ecological considerations, we restrict our analysis to the re- 

gion 

� = 

{
(X, Y, Z) ∈ R 

3 : X ≥ 0 , Y ≥ 0 , Z ≥ 0 

}
. 

The interior of � correspond to the positive octant of R 

3 . In the 

first step of the stability analysis, we find the equilibrium points of 

the food–chain system (1.1) in �. To do this, we solve the system 

of algebraic equations that result to equalling zero the right hand 

side of (1.1) and we obtain the equilibrium points 

P ∗0 = ( 0 , 0 , 0 ) , (3.1) 

P ∗1 = ( k, 0 , 0 ) , (3.2) 

P ∗2 = 

(
d 

a 1 c 
, 
ρB 1 

a 2 
1 
ck 

, 0 

)
, (3.3) 

P ∗3 = 

( 

k ( ρσ − a 1 B 2 ) 

ρσ
, 

B 2 

σ
, 
β
(
ρσB 1 − a 2 1 ckB 2 

)
a 2 ρσ 2 

) 

. (3.4) 

where 

B 1 = a 1 ck − d, and B 2 = β − b 2 σ. 

The equilibrium P ∗
1 

is consistent with the limit case in the sense 

that two predators are absent and the prey population density 

grows to reach, as a maximum, the carrying capacity k . To clarify 

the above claim, note that the solution to the equation of popula- 

tion growth of preys in the absence of predators is 

X (τ ) = 

k 

1 −
(
1 − k 

X(0) 

)
e −ρτ

and when the time tends to infinite we obtain 

lim 

τ→∞ 

X (τ ) = k. 

We observe that the carrying capacity k is reached independently 

of the initial values. To guarantee that the equilibrium points P ∗2 
and P ∗

3 
are in �, it is necessary to verify that the following condi- 

tions over the parameters are satisfied: B 1 > 0, B 2 > 0, ρσ > a 1 B 2 
and ρσB 1 > a 2 1 ckB 2 . Ecologically, the equilibrium P ∗2 opens the pos- 

sibility that the predator Y and prey X can survive. It is important 

to observe that, ecologically, the equilibrium points of the form 

(0 , ̃  Y , 0) , (0 , 0 , ̃  Z ) and (0 , ̃  Y , ̃  Z ) are excluded, since the populations 

of predators die in the absence of their preys and the predators 

also become extinct if no other resource to modify their diet, this 

can be verified by simple inspection in equations. Finally, the equi- 

librium point P ∗3 is the equilibrium where the three species coexist 

and for this reason is the most important for the analysis. 

The next step in the stability analysis is the behaviour near of 

the equilibrium points P ∗2 and P ∗3 . For this purpose, we compute the 

linearization for the system (1.1) in each equilibrium point. 

Dynamics in absence of the top–predator 

In absence of the top–predator ( Z = 0 ), the system (1.1) is re- 

duced to the predator–prey system 

˙ X = ρX 

(
1 − X 

k 

)
− a 1 X Y, 

˙ Y = ca 1 X Y − dY. (3.5) 

The model (3.5) has the equilibrium point P E 2 = 

(
d 

a 1 c 
, 
ρB 1 

a 2 
1 
ck 

)
, 

which is located in the positive region of R 

2 when B 1 > 0. This 
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