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a b s t r a c t 

In this paper, the complex motions for a moving piston in a closed gas cylinder will be analyzed using 

the discrete implicit maps method. The strong nonlinearity of such system will be observed due to the 

large quadratic and cubic stiffness. Period-1 motions which contain high order of harmonic components 

will be presented. The periodic motions will be discretized into multiple continuous mappings, and such 

mapping can be analyzed via Newton–Raphson iteration. The stability analysis will be given and the 

analytic conditions for the saddle-node and period-doubling bifurcation will be determined. From the 

semi-analytic solution route, the possible motions without considering the impact of the piston with the 

end wall of the cylinder will be obtained analytically. The scheme to reduce the vibration of the piston 

can be obtained through the parameter studies. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The nonlinear systems have been extensively investigated with 

various analytic and numeric approaches over centuries. Since the 

motion for nonlinear system is difficult to predict, and it is highly 

sensitive to the initial conditions, one tried to seek an efficient ap- 

proach to get the rigid solution when the trajectory converges to 

the equilibrium. Traditional methodologies, including perturbation 

method, harmonic balance method, and multiple scales method 

etc., can give approximate solution of periodic motions for non- 

linear system with small parameters of nonlinear terms. However, 

those approaches are not capable of dealing with systems with 

strong nonlinearity which widely exists in the real applications. 

At the end of the 18th century, Lagrange [1] studied periodic 

motions of three-body problem by perturbing the two-body prob- 

lem using the method of averaging. Using the method of averaging, 

the average value of the amplitude of a slowly-varying oscillation 

over a cycle of the path can be calculated [2] . Poincare [3] devel- 

oped the perturbation theory for periodic motions of celestial bod- 

ies. The solution is assumed to include linear parts and perturbed 

terms. A set of functions can be obtained for each order of per- 

turbation parameters to determine the perturbed terms. Schwartz 

and Whitney [4] investigated the time- and space-periodic stand- 

ing waves in deep water via a time-dependent conformal mapping 

method. The Stoke-type expansion was used by assuming the wave 
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height to be small. Shawagfeh [5] gave an approximate solution for 

the nonlinear oscillator by expanding the nonlinear term as sum- 

mation of s set of Adomian polynomials. Hill [6] solved the cou- 

pling equations for the amplitudes of the interfacial and surface 

wave fields in terms of Jacobian elliptic functions. In 2010, Ramlan 

et al. [7] considered a hardening stiffness in an energy harvesting 

device, and the effect of shifting the resonance frequency to in- 

crease the bandwidth of the system for such hardening spring has 

been studied. Liu et al. [8] proposed a nonlinear model to repre- 

sent the series chemical reactions, and gave the analytic solution 

for such nonlinear system via symbolic computation. In 2012, Luo 

[9] developed a so-called generalized harmonic balance method to 

obtain the steady state solutions for the dynamical systems with 

strong nonlinearity. Luo and Huang [10] presented the bifurcation 

route of period-1 motions for a Duffing oscillator with cubic damp- 

ing analytically using this method. Luo and Huang [12] then fur- 

ther investigated the mechanism for period-m motions to chaos 

in the Duffing oscillator. For the generalized harmonic balance 

method, the stability is determined by the eigenvalues of the Jaco- 

bian matrix for the periodic motion. For a complex motion which 

requires higher orders of approximation, its Jacobian matrix is the 

super-large sparseness matrix which costs great computation effort 

to get its eigenvalues and the accuracy cannot be guaranteed. To 

remove such drawback, Luo [12] developed a semi-analytical ap- 

proach to determine periodic motions in nonlinear dynamical sys- 

tems via discrete implicit maps. Luo and Guo [13] applied such 

technology to carry out the bifurcation tress of a Duffing oscillator. 

This semi-analytical method gave exact the same predictions as in 
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Fig. 1. Illustration of the mobile piston inside a cylinder with nonlinear spring and 

damper. 

[10,11] , and the dimension of the Jacobian matrix has been reduced 

to two for any kinds of periodic motions. Guo and Luo [14] contin- 

ued to study the complex periodic motions and bifurcation trees 

of periodic motions to chaos in the Duffing oscillator with twin- 

well potential. For time-delayed nonlinear dynamical systems, the 

improved semi-analytical method was adopted to study the com- 

plex symmetric and asymmetric period-1 motions for a periodi- 

cally forced, time-delayed, hardening Duffing oscillator in [15] . 

In this paper, a mobile piston model in a high pressure gas 

cylinder [16] will be studied. The thermal effect will be decou- 

pled for the purpose of simplification. A P controller will be con- 

sidered in the controlled force in order to reduce the vibration of 

the piston. The bifurcation trees of period-1 motions to chaos in 

such nonlinear system will be presented using a semi-analytical 

method. The equation of motion for such mobile piston system will 

be discretized to get the discrete implicit maps. Based on the alge- 

braic equations in mapping structures, the periodic motions for the 

mobile piston system without considering the boundary conditions 

can be predicted analytically. The analytic conditions of the period- 

doubling and saddle-node bifurcation for the periodic motion for 

such system will be discussed. Through the Fast Fourier Transform 

(FFT), nonlinear harmonic frequency-amplitude characteristic will 

be discussed. Numerical illustrations of periodic motions will be 

presented to interpret the mechanism of periodic motions to chaos. 

2. System modeling and discretization 

A mobile piston attached to a nonlinear spring and a damper 

is moving inside a closed cylinder which is illustrated in Fig. 1 . 

The cylinder is filled with nitrogen, and the pressure inside the 

cylinder is extremely high. The piston has a mass m and dimen- 

sion S × c , and it is excited with an external control force F ′ ( t ). The 

atmospheric pressure is P a , and the pressure inside the cylinder 

P ( t ) is time varying. The linear and cubic spring stiffness is K 1 and 

K 2 , respectively. The viscous damping is denoted by b . 

d 1 is the initial length of the spring, and the displacement of 

the mobile piston from the standing surface S 0 is a ( t ). Then the 

equation of motion for the piston can be derived as 

m 

d 2 a (t) 

d t 2 
= F (t) − S · P (t) + K 1 [ d − d 1 − a (t)] 

+ K 2 [ d − d 1 − a (t)] 3 + b 
d[ d − d 1 − a (t)] 

dt 
(1) 

where 

d = L + L 1 − c/ 2 (2) 

F (t) = F ′ (t) + S · P a (3) 

Let 

d̄ 1 = d 1 − V sd /S (4) 

Fig. 2. Semi-analytic bifurcation route of period-1 to period-4 motions varying with 

normalized excitation frequency: (a) periodic node volume and (b) periodic node 

change rate of volume. 

Eq. (1) can be rewritten as 

d 2 V (t) 

d t 2 
= 

S 2 

m 

P (t) − S 

m 

F (t) − K 1 

m 

[ V (t) − S · d̄ 1 ] 

− K 2 

m S 2 
[ V (t) − S · d̄ 1 ] 

3 − b 

m 

dV (t) 

dt 
(5) 

with 

V (t) = S[ d − a (t)] − V sd (6) 

where V ( t ) is the gas volume and V sd is volume of the spring and 

damper. 

To simplify the system, let V p (t) = V (t) − S · d̄ 1 , then one can 

obtain 

d 2 V p (t) 

d t 2 
= 

S 2 

m 

P (t) − S 

m 

F (t) − K 1 

m 

V p (t) − K 2 

m S 2 
V 

3 
p (t) − b 

m 

d V p (t) 

dt 

(7) 

Consider the pressure in the closed cylinder is high, and the 

force upon the piston cannot be balanced unless the spring and 

damper also have prohibitive coefficient. Therefore, the control law 

for the external force has to be chosen as 

S 

m 

F (t) = 

S 2 

m 

P (t) − f p 
b 

m 

d V p (t) 

dt 
− K 

mS 
V 

2 
p (t) + 

K p 

m 

V p (t) + Q 0 cos �t 

(8) 

where K is the constant of the control force; K p represents the pro- 

portional gain to avoid the piston impacting with the cylinder end; 

f p is a variable factor such that the friction effect is considered 

when f p = 0 and removed when f p = 1; Q 0 and � are the ampli- 

tude and frequency of the periodic force, respectively. 
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