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a b s t r a c t 

The dynamics of unidirectionally coupled chaotic Lorenz systems is investigated. It is revealed that chaos 

is present in the response system regardless of generalized synchronization. The presence of sensitivity is 

theoretically proved, and the auxiliary system approach and conditional Lyapunov exponents are utilized 

to demonstrate the absence of synchronization. Periodic motions embedded in the chaotic attractor of 

the response system is demonstrated by taking advantage of a period-doubling cascade of the drive. The 

obtained results may shed light on the global unpredictability of the weather dynamics and can be useful 

for investigations concerning coupled Lorenz lasers. 
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1. Introduction 

Chaos theory, whose foundations were laid by Poincaré [1] , has 

attracted a great deal of attention beginning with the studies of 

Lorenz [2,3] . A mathematical model consisting of a system of three 

ordinary differential equations were introduced by Lorenz [3] in or- 

der to investigate the dynamics of the atmosphere. This model is a 

simplification of the one derived by Saltzman [4] which originate 

from the Rayleigh-Bénard convection. The demonstration of sensi- 

tivity in the Lorenz system can be considered as a milestone in the 

theory of dynamical systems. Nowadays, this property is consid- 

ered as the main ingredient of chaos [5] . 

A remarkable behavior of coupled chaotic systems is the syn- 

chronization [6–10] . This concept was studied for identical systems 

in [9] and was generalized to non-identical systems by Rulkov 

et al. [10] . Generalized synchronization (GS) is characterized by the 

existence of a transformation from the trajectories of the drive to 

the trajectories of the response. A necessary and sufficient condi- 

tion concerning the asymptotic stability of the response system for 

the presence of GS was mentioned in [11] , and some numerical 

techniques were developed in the papers [10,12] for its detection. 

Even though coupled chaotic systems exhibiting GS have been 

widely investigated in the literature, the presence of chaos in the 

dynamics of the response system is still questionable in the ab- 

sence of GS. The main goal of the present study is the verification 

of the persistence of chaos in unidirectionally coupled Lorenz sys- 

tems even if they are not synchronized in the generalized sense. 

We rigorously prove that sensitivity is a permanent feature of the 

response system, and we numerically demonstrate the existence 
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of unstable periodic orbits embedded in the chaotic attractor of 

the response benefiting from a period-doubling cascade [13] of 

the drive. Conditional Lyapunov exponents [9] and auxiliary sys- 

tem approach [12] are utilized to show the absence of GS. Our re- 

sults reveal that the chaos of the drive system does not annihilate 

the chaos of the response, i.e., the response remains to be unpre- 

dictable under the applied perturbation. 

The idea of using perturbations to generate chaos in systems 

of differential equations was initiated in the studies [14–16] , and 

extension of chaos in coupled systems was considered in [17–20] . 

In particular, the paper [19] was concerned with the extension of 

sensitivity and periodic motions in unidirectionally coupled Lorenz 

systems in which the response is initially non-chaotic, i.e., it either 

admits an asymptotically stable equilibrium or an orbitally stable 

periodic orbit in the absence of driving. On the contrary, in this 

paper, we investigate the dynamics of coupled Lorenz systems in 

which the response system is chaotic in the absence of the driving. 

Another issue that was considered in [19] is the global unpre- 

dictable behavior of the weather dynamics. We made an effort in 

[19] to answer the question why the weather is unpredictable at 

each point of the Earth on the basis of Lorenz systems. This subject 

was discussed by assuming that the whole atmosphere of the Earth 

is partitioned in a finite number of subregions such that in each 

of them the dynamics of the weather is governed by the Lorenz 

system with certain coefficients. It was further assumed that there 

are subregions for which the corresponding Lorenz systems admit 

chaos with the main ingredient as sensitivity, which means unpre- 

dictability of weather in the meteorological sense, and there are 

subregions in which the Lorenz systems are non-chaotic. It was 

demonstrated in [19] that if a subregion with a chaotic dynam- 

ics influences another one with a non-chaotic dynamics, then the 
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latter also becomes unpredictable. However, there is still an impor- 

tant question if chaos is suppressed under the interaction of two 

subregions whose dynamics are both governed by chaotic Lorenz 

systems. The results of the present study show that this is not the 

case, and the interaction of two chaotic subregions leads to the 

persistence of unpredictability under certain conditions. 

The rest of the paper is organized as follows. In Section 2 , the 

model of coupled Lorenz systems is introduced. Section 3 is de- 

voted to the theoretical discussion of the sensitivity feature in the 

response system. Section 4 , on the other hand, is concerned with 

the numerical analyses of coupled Lorenz systems for the persis- 

tence of chaos as well as the absence of GS. The existence of un- 

stable periodic motions embedded in the chaotic attractor of the 

response is demonstrated in Section 5 . Some concluding remarks 

are given in Section 6 , and finally, the proof of the main theorem 

concerning sensitivity is provided in the Appendix. 

2. The model 

Consider the following Lorenz system [3] 

˙ x 1 = −σ x 1 + σ x 2 

˙ x 2 = −x 1 x 3 + rx 1 − x 2 

˙ x 3 = x 1 x 2 − bx 3 , (2.1) 

where σ , r , and b are constants. 

System (2.1) has a rich dynamics such that for different values 

of the parameters σ , r and b , the system can exhibit stable pe- 

riodic orbits, homoclinic explosions, period-doubling bifurcations, 

and chaotic attractors [21] . In the remaining parts of the paper, 

we suppose that the dynamics of (2.1) is chaotic, i.e., the system 

admits sensitivity and infinitely many unstable periodic motions 

embedded in the chaotic attractor. In this case, (2.1) possesses a 

compact invariant set � ⊂ R 

3 . 

Next, we take into account another Lorenz system, 

˙ u 1 = −σu 1 + σu 2 

˙ u 2 = −u 1 u 3 + r u 1 − u 2 

˙ u 3 = u 1 u 2 − b u 3 , (2.2) 

where the parameters σ , r and b are such that system (2.2) is also 

chaotic. Systems (2.1) and (2.2) are, in general, non-identical, since 

the coefficients σ , r, b and σ , r , b can be different. 

We perturb (2.2) with the solutions of (2.1) to set up the sys- 

tem 

˙ y 1 = −σy 1 + σy 2 + g 1 (x (t)) 

˙ y 2 = −y 1 y 3 + r y 1 − y 2 + g 2 (x (t)) 

˙ y 3 = y 1 y 2 − b y 3 + g 3 (x (t)) , (2.3) 

where x (t) = (x 1 (t) , x 2 (t) , x 3 (t)) is a solution of (2.1) and g(x ) = 

(g 1 (x ) , g 2 (x ) , g 3 (x )) is a continuous function such that there ex- 

ists a positive number L g satisfying ‖ g(x ) − g( x ) ‖ ≥ L g ‖ x − x ‖ for 

all x , x ∈ �. Here, ‖ . ‖ denotes the usual Euclidean norm in R 

3 . It is 

worth noting that the coupled system (2.1) + (2.3) has a skew prod- 

uct structure. We refer to (2.1) and (2.3) as the drive and response 

systems, respectively. 

In the next section, we will demonstrate the existence of sensi- 

tivity in the dynamics of the response system. 

3. Sensitivity in the response system 

Fix a point x 0 from the chaotic attractor of (2.1) and take a so- 

lution x ( t ) with x (0) = x 0 . Since we use the solution x ( t ) as a per- 

turbation in (2.3) , we call it a chaotic function . Chaotic functions 

may be irregular as well as regular (periodic and unstable) [3,21] . 

We suppose that the response system (2.3) possesses a compact 

Fig. 1. Sensitivity in the response system (2.3) . The simulation supports the result 

of Theorem 3.1 such that sensitivity is permanent in system (2.2) although it is 

driven by the solutions of (2.1) . 

invariant set U ⊂ R 

3 for each chaotic solution x ( t ) of (2.1) . The ex- 

istence of such an invariant set can be shown, for example, using 

Lyapunov functions [19,22] . 

One of the main ingredients of chaos is sensitivity [3,5,20] . Let 

us describe this feature for both the drive and response systems. 

System (2.1) is called sensitive if there exist positive numbers 

ε0 and � such that for an arbitrary positive number δ0 and for 

each chaotic solution x ( t ) of (2.1) , there exist a chaotic solution x (t) 

of the same system and an interval J ⊂ [0, ∞ ), with a length no less 

than �, such that ‖ x (0) − x (0) ‖ < δ0 and ‖ x (t) − x (t) ‖ > ε0 for all 

t ∈ J . 

For a given solution x ( t ) of (2.1) , let us denote by φx ( t ) ( t, y 0 ) the 

unique solution of (2.3) satisfying the condition φx (t) (0 , y 0 ) = y 0 . 

We say that system (2.3) is sensitive if there exist positive numbers 

ε1 and � such that for an arbitrary positive number δ1 , each y 0 ∈ 

U , and each chaotic solution x ( t ) of (2.1) , there exist y 1 ∈ U , a 

chaotic solution x (t) of (2.1) , and an interval J 1 ⊂ [0, ∞ ), with a 

length no less than �, such that ‖ y 0 − y 1 ‖ < δ1 and ‖ φx (t) (t, y 0 ) −
φx (t) (t, y 1 ) ‖ > ε1 for all t ∈ J 1 . 

The next theorem confirms that the sensitivity feature remains 

persistent for (2.2) when it is perturbed with the solutions of the 

drive system (2.1) . This feature is true even if the systems (2.1) and 

(2.3) are not synchronized in the generalized sense. 

Theorem 3.1. The response system (2.3) is sensitive. 

The proof of Theorem 3.1 is provided in the Appendix. In the 

next section, we will demonstrate that the response system pos- 

sesses chaotic motions regardless of the presence of GS. 

4. Chaotic dynamics in the absence of generalized 

synchronization 

Let us take into account the drive system (2.1) with the pa- 

rameter values σ = 10 , r = 28 , b = 8 / 3 such that the system pos- 

sesses a chaotic attractor [3,21] . Moreover, we set σ = 10 , r = 

60 , b = 8 / 3 and g 1 (x 1 , x 2 , x 3 ) = 2 . 95 x 1 − 0 . 25 sin x 1 , g 2 (x 1 , x 2 , x 3 ) = 

3 . 06 arctan x 2 , g 3 (x 1 , x 2 , x 3 ) = 3 . 12 x 3 + 1 . 75 e −x 3 in the response 

system (2.3) . The unperturbed Lorenz system (2.2) is also chaotic 

with the aforementioned values of σ , r , and b [8,21] . 

In order to demonstrate the presence of sensitivity in the re- 

sponse system (2.3) numerically, we depict in Fig. 1 the projec- 

tions of two initially nearby trajectories of the coupled system 

(2.1) + (2.3) on the y 1 − y 2 − y 3 space. In Fig. 1 , the projection of 

the trajectory corresponding to the initial data x 1 (0) = −8 . 631 , 

x 2 (0) = −2 . 382 , x 3 (0) = 33 . 096 , y 1 (0) = 10 . 871 , y 2 (0) = −4 . 558 , 

y 3 (0) = 70 . 541 is shown in blue, and the one corresponding to 

the initial data x 1 (0) = −8 . 615 , x 2 (0) = −2 . 464 , x 3 (0) = 33 . 067 , 
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