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1. Introduction

In modern optical experiments on a quantum wave propagation
in nonlinear media a suitable description can be suggested in the
framework of the fractional kinetics based on fractional integro-
differentiation. This concept of differentiation of non-integer or-
ders arises from works of Leibniz, Liouville, Riemann, Grunwald,
and Letnikov, see e.g., [1-3]. Its application is related to random
processes with power law distributions. This corresponds to the
absence of characteristic average values for processes exhibiting
many scales [4,5].

A typical example of fractional dynamics in optics is realized
in a competition between localization and nonlinearity that leads
to anomalous transport [6-12]| (See also a recent review [13]).
This dynamics is described in the framework of the nonlinear
Schrédinger equation (NLSE) in the presence of an external field
V=V(x), xe€ (—o0,+00). The wave spreading, described by the
wave function, is governed by the nonlinear Schrédinger equation
in the presence of disorder

0y = =05y + BlY Py +Vyr, (11)

where B is a nonlinearity parameter. The variables are chosen in
dimensionless units and the Planck constant is i = 1. The random
potential V =V (x), x € (—oo, +o0) leads to Anderson localization
for the linear case (8 = 0) [14,15]. The system is described by the
exponentially localized Anderson modes (AM)s W, = W (x), such
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that [—02 + V (X)W, (x) = @, Wi (x), where Wy, (x) are real func-
tions and the eigenspectrum @ is discrete and dense [15]. The
problem in question is an evolution of an initially localized wave
function ¥ (t = 0) = 1 (x). It can be also a stationary state of the
NLSE, which is localized with the same Lyapunov exponent [16,17].

This problem is relevant to experiments in nonlinear optics, for
example disordered photonic lattices [18,19], where Anderson lo-
calization was found in the presence of nonlinear effects, as well as
to experiments on Bose-Einstein condensates in disordered optical
lattices [20-23]. A discrete analog of Eq. (1.1) is extensively stud-
ied numerically [6-9,12], and a subdiffusive spreading of the ini-
tially localized wave packet has been observed, such that (x2(t)) =
[ ¥ (£)|>x*dx ~ t*, where a transport exponent o was found to
be 2/5 [9] and 1/3 [8]. This difference has been explained in [24],
where it has been shown that the former result is for the Marko-
vian subdiffusion due to the range-dependent diffusion coefficient,
while the latter one corresponds to non-Markovian fractional dif-
fusion in a regime of percolation. In that case the dynamics of
the wave packet has been approximated by the fractional Fokker-
Planck equation (FFPE) due to the arguments of a so-called contin-
uous time random walk (CTRW).

A subdiffusive spreading of the wave packet was also obtained
analytically [10,24] in the limit of the large times asymptotic dy-
namics, where the transport exponent « has been found as well.

The concept of the CTRW was originally developed for mean
first passage time in a random walk on a lattice with further appli-
cation to a semiconductor electronic motion [25]. The mathemati-
cal apparatus of the fractional CTRW is well established for many
applications in physics, see e.g., [4,5,26-28].
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In the present research we present the physical mechanism of
subdiffusion of a quantum wave packet spreading and propose a
quantum master equation based on the CTRW consideration, re-
lated to the quantum properties of the nonlinear interaction term
in Eq. (1.1). To this end we consider a quantum counterpart of
the NLSE (1.1) (quantum NLSE), when the wave functions (x)
are considered as operators 1//(x) satisfying to the commutation
rule [1/f(x) wT(x )] =68(x —x’). The paper consists of two parts.
The first one is a quantum analysis which is based on mapping
of the quantum system on the basis of the coherent states, and
in the framework of the obtained equations we study four-mode
decays to understand quantum continuous time walks and con-
struct a generalized master equation as a quantum counterpart of
the Liouville equation. The second part is a classical analysis of
the c-number Liouville equation for the mean probability ampli-
tude (|1/7(x, t)|2), where the transition elements in the Liouville
operator are overlapping integrals of the AMs. Therefore, the fur-
ther analysis is an application of the CTRW approach to the corre-
sponding Liouville equation [29]. We also show that subdiffusion
of the quantum wave packet with a transport exponent o = 1/2
has a quantum nature.

2. Quantum NLSE

We concern with a quantum counterpart of the NLSE (1.1). In
this case, an initial wave spreading is governed by the quantum
nonlinear Schrédinger equation

ihdcyr = Aoy + Bl 1P
where [1/7()(), 1/7()4’)] = 8(x —x’). The Hamiltonian Hy corresponds
to the Anderson localization problem I:Iolllwk (%) = Wy, (%),
where W, (x) are the AMs, presented in Introduction. One should
recognize that the classical NLSE (1.1) is independent of the Planck
constant. Therefore, for the quantum analysis, an effective dimen-

sionless Planck constant h is introduced explicitly. Projecting Eq.
(2.1) on the basis of the AMs

Y0 = Co (W0, (x) = > GO W (x),

k

(2.1)

(2.2)

we obtain a system of equations for the operators of the expansion
Ck, where [Ck,CT] = Jy - This system of the Heisenberg equations

'th [Ck, ,A] is governed by the quantum Hamiltonian
A=Y haoyClC, + —ﬂ ZAkcT ¢ GG,
k

where A(K) = k2k1 ks

(2.3)

is an overlapping integral of the four AMs:

A = / Wi (X) W, () Wy, (%) W, (X)dlx. (24)
For h =0, Eq. (2.3) reduces to the classical NLSE (1.1). The linear
frequency is shifted by the nonlinear term due to the commuta-
tion wy - wy + hﬁAo where Ay = A¥ is the diagonal overlapping
integral in Eq. (2.4).

kk

2.1. Phase space dynamics and the Liouville operator

For the quantum mechanical analysis we use a technique of
mapping the Heisenberg equation of motion on a basis of the
coherent states [30-32]. At the initial moment t = 0, one intro-
duces the coherent states vector [a) =[], [aq) as the product of

eigenfuctions of annihilation operators dg :Cq(t =0), such that
dqlag) = aqglag) and correspondingly dq|a) = aqla), where also the
coherent state is constructed from a vacuum state |0)
Gq|0) =

lag) = exp[aq&I’ — agdq]|0) (2.5)

Introducing c-functions
Co(t) = (alGy(0)]a) = Cq(t]a", a)

one maps the Heisenberg equation of motion on the basis |a) as
follows

ihC,(t) = (a|C,(H)A — AC,(t)a) .

(2.6)

(2.7)
Accounting Egs. (2.5) and (2.6), one obtains the mapping rules

(@|Cy(t)alla) = e—lﬂqlza%e\aalch(t),

(@laiC0la) = e Loty r). (28)

q

The Hamiltonian is the integral of motion A({C]. G}) = A({al. dg}),
therefore the mapping rules (2.8) yield equation of motion (2.7) for

Cq(t) in the closed form
ic,(t) = Ke(t), (2.9)

where

P 1 _ 2| A 8 5 8 2
e [ o) o D

=y |:a)qaqaa - c.c:|
dq

q

hB L9
+5 ;Aq |:2aq1 90,95 5. T %%; - c.c]. (2.10)

aa% 8a114

limit >0, the second derivative terms vanish,
— 0, and the operator (2.10) reduces to the

In the

hag, 4, g as,
classical Llouv1lle operator [10].

2.2. Liouville equation

To construct a quantum Kkinetic equation, or master equation,
we consider the density operator p = || and map it on the basis
of the coherent states |a) in Eq. (2.5), such that

P(t) =P at) = (ap(t)]a).

Therefore, from the mapping rules one obtains the Liouville equa-
tion for the mean probability density

9P(t) =LP(t).

Here the quantum “Liouville” operator is determined in Eq. (2.10)

(2.11)

(2.12)

[=-ik. (2.13)

The initial condition is constructed as a superposition

Px.t=0)=Po(x) =Y EDW(x) ¥} (), (2.14)
k,k'

where Fl(l’, = aiay,. Eventually, we obtain that the quantum NLSE

(2.1) is replaced by the Liouville Eq. (2.12), which is the linear
equation with a formal solution in the exponential form

PR.1) = e Py(x) = 3 W (x) W (x) = i [ L"]Fk“,’g . (215)

k.k' n=0

The Liouville operator can be considered as a sum of two operators
L =1Iy+L;. where Ly corresponds to the dynamics inside a cluster,
determined by the overlapping integrals of the order of 1, while L;
corresponds to jumps between these clusters due to the exponen-
tially small overlapping integrals. Thus considering this dynamics
in the “interaction picture”, where L; (t) = e~Lot[,elot, one obtains
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