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A quantum nonlinear Schrödinger equation in the presence of disorder is considered. The dynamics of an 

initially localized wave packet is studied and subdiffusion of the wave packet is obtained with a transport 

exponent 1/2. It is shown that this transport exponent has pure quantum nature. A probabilistic descrip- 

tion of subdiffusion in the framework of a quantum continuous time random walk is suggested and a 

quantum master equation is obtained. 
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1. Introduction 

In modern optical experiments on a quantum wave propagation 

in nonlinear media a suitable description can be suggested in the 

framework of the fractional kinetics based on fractional integro- 

differentiation. This concept of differentiation of non-integer or- 

ders arises from works of Leibniz, Liouville, Riemann, Grunwald, 

and Letnikov, see e.g., [1–3] . Its application is related to random 

processes with power law distributions. This corresponds to the 

absence of characteristic average values for processes exhibiting 

many scales [4,5] . 

A typical example of fractional dynamics in optics is realized 

in a competition between localization and nonlinearity that leads 

to anomalous transport [6–12] (See also a recent review [13] ). 

This dynamics is described in the framework of the nonlinear 

Schrödinger equation (NLSE) in the presence of an external field 

V = V (x ) , x ∈ (−∞ , + ∞ ) . The wave spreading, described by the 

wave function, is governed by the nonlinear Schrödinger equation 

in the presence of disorder 

i∂ t ψ = −∂ 2 x ψ + β| ψ | 2 ψ + V ψ , (1.1) 

where β is a nonlinearity parameter. The variables are chosen in 

dimensionless units and the Planck constant is h̄ = 1 . The random 

potential V = V (x ) , x ∈ (−∞ , + ∞ ) leads to Anderson localization 

for the linear case ( β = 0 ) [14,15] . The system is described by the 

exponentially localized Anderson modes (AM)s �ω k ≡ �k (x ) , such 
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that [ −∂ 2 x + V (x )]�k (x ) = ω k �k (x ) , where �ω k (x ) are real func- 

tions and the eigenspectrum ω k is discrete and dense [15] . The 

problem in question is an evolution of an initially localized wave 

function ψ(t = 0) = ψ 0 (x ) . It can be also a stationary state of the 

NLSE, which is localized with the same Lyapunov exponent [16,17] . 

This problem is relevant to experiments in nonlinear optics, for 

example disordered photonic lattices [18,19] , where Anderson lo- 

calization was found in the presence of nonlinear effects, as well as 

to experiments on Bose–Einstein condensates in disordered optical 

lattices [20–23] . A discrete analog of Eq. (1.1) is extensively stud- 

ied numerically [6–9,12] , and a subdiffusive spreading of the ini- 

tially localized wave packet has been observed, such that 〈 x 2 (t) 〉 = ∫ | ψ(t) | 2 x 2 dx ∼ t α, where a transport exponent α was found to 

be 2/5 [9] and 1/3 [8] . This difference has been explained in [24] , 

where it has been shown that the former result is for the Marko- 

vian subdiffusion due to the range-dependent diffusion coefficient, 

while the latter one corresponds to non–Markovian fractional dif- 

fusion in a regime of percolation. In that case the dynamics of 

the wave packet has been approximated by the fractional Fokker–

Planck equation (FFPE) due to the arguments of a so-called contin- 

uous time random walk (CTRW). 

A subdiffusive spreading of the wave packet was also obtained 

analytically [10,24] in the limit of the large times asymptotic dy- 

namics, where the transport exponent α has been found as well. 

The concept of the CTRW was originally developed for mean 

first passage time in a random walk on a lattice with further appli- 

cation to a semiconductor electronic motion [25] . The mathemati- 

cal apparatus of the fractional CTRW is well established for many 

applications in physics, see e.g., [4,5,26–28] . 
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In the present research we present the physical mechanism of 

subdiffusion of a quantum wave packet spreading and propose a 

quantum master equation based on the CTRW consideration, re- 

lated to the quantum properties of the nonlinear interaction term 

in Eq. (1.1) . To this end we consider a quantum counterpart of 

the NL SE (1.1) (quantum NL SE), when the wave functions ψ( x ) 

are considered as operators ˆ ψ (x ) satisfying to the commutation 

rule [ ˆ ψ (x ) , ˆ ψ 

† (x ′ )] = δ(x − x ′ ) . The paper consists of two parts. 

The first one is a quantum analysis which is based on mapping 

of the quantum system on the basis of the coherent states, and 

in the framework of the obtained equations we study four-mode 

decays to understand quantum continuous time walks and con- 

struct a generalized master equation as a quantum counterpart of 

the Liouville equation. The second part is a classical analysis of 

the c -number Liouville equation for the mean probability ampli- 

tude 〈| ˆ ψ (x, t) | 2 〉 , where the transition elements in the Liouville 

operator are overlapping integrals of the AMs. Therefore, the fur- 

ther analysis is an application of the CTRW approach to the corre- 

sponding Liouville equation [29] . We also show that subdiffusion 

of the quantum wave packet with a transport exponent α = 1 / 2 

has a quantum nature. 

2. Quantum NLSE 

We concern with a quantum counterpart of the NLSE (1.1) . In 

this case, an initial wave spreading is governed by the quantum 

nonlinear Schrödinger equation 

i ̃ h ∂ t ˆ ψ = 

ˆ H 0 
ˆ ψ + β| ˆ ψ | 2 ˆ ψ , (2.1) 

where [ ˆ ψ (x ) , ˆ ψ (x ′ )] = δ(x − x ′ ) . The Hamiltonian 

ˆ H 0 corresponds 

to the Anderson localization problem 

ˆ H 0 �ω k (x ) = ω k �ω k (x ) , 

where �ω k (x ) are the AMs, presented in Introduction. One should 

recognize that the classical NLSE (1.1) is independent of the Planck 

constant. Therefore, for the quantum analysis, an effective dimen- 

sionless Planck constant ˜ h is introduced explicitly. Projecting Eq. 

(2.1) on the basis of the AMs 

ˆ ψ (x, t) = 

∑ 

ω k 

ˆ C ω k (t)�ω k (x ) ≡
∑ 

k 

ˆ C k (t)�k (x ) , (2.2) 

we obtain a system of equations for the operators of the expansion 

ˆ C k , where [ ̂  C k , ˆ C 
† 

l 
] = δk,l . This system of the Heisenberg equations 

i ̃ h ̇ ˆ C k = [ ̂  C k , , ˆ H ] is governed by the quantum Hamiltonian 

ˆ H = 

∑ 

k 

˜ h ω k ̂
 C † 
k 

ˆ C k + 

˜ h 

2 β

2 

∑ 

k 

A k ̂
 C † 
k 1 

ˆ C † 
k 2 

ˆ C k 3 
ˆ C k 4 , (2.3) 

where A (k ) ≡ A 

k,k 1 
k 2 ,k 3 

is an overlapping integral of the four AMs: 

A 

k,k 1 
k 2 ,k 3 

= 

∫ 
�k (x )�k 1 (x )�k 2 (x )�k 3 (x ) dx . (2.4) 

For ˜ h = 0 , Eq. (2.3) reduces to the classical NLSE (1.1) . The linear 

frequency is shifted by the nonlinear term due to the commuta- 

tion ω k → ω k + ̃

 h βA 0 , where A 0 = A 

kk 
kk 

is the diagonal overlapping 

integral in Eq. (2.4) . 

2.1. Phase space dynamics and the Liouville operator 

For the quantum mechanical analysis we use a technique of 

mapping the Heisenberg equation of motion on a basis of the 

coherent states [30–32] . At the initial moment t = 0 , one intro- 

duces the coherent states vector | a 〉 = 

∏ 

q | a q 〉 as the product of 

eigenfuctions of annihilation operators ˆ a q = 

ˆ C q (t = 0) , such that 

ˆ a q | a q 〉 = a q | a q 〉 and correspondingly ˆ a q | a 〉 = a q | a 〉 , where also the 

coherent state is constructed from a vacuum state |0 〉 
| a q 〉 = exp [ a q ̂  a † q − a ∗q ̂  a q ] | 0 〉 , ˆ a q | 0 〉 = 0 . (2.5) 

Introducing c -functions 

C q (t) = 〈 a | ̂  C q (t) | a 〉 = C q (t| a ∗, a ) , (2.6) 

one maps the Heisenberg equation of motion on the basis | a 〉 as 

follows 

i ̃ h 

˙ C q (t) = 〈 a | ̂  C q (t) ̂  H − ˆ H ̂

 C q (t) | a 〉 . (2.7) 

Accounting Eqs. (2.5) and (2.6) , one obtains the mapping rules 

〈 a | ̂  C q (t) ̂  a † q | a 〉 = e −| a q | 2 ∂ 

∂a q 
e | a q | 2 C q (t) , 

〈 a | ̂  a q ̂  C q (t) | a 〉 = e −| a q | 2 ∂ 

∂a ∗q 
e | a q | 2 C q (t) . (2.8) 

The Hamiltonian is the integral of motion 

ˆ H ({ ̂  C 
† 
q , 

ˆ C q } ) = 

ˆ H ({ ̂  a 
† 
q , ̂  a q } ) , 

therefore the mapping rules (2.8) yield equation of motion (2.7) for 

C q (t) in the closed form 

i ˙ C q (t) = 

ˆ K C(t) , (2.9) 

where 

ˆ K = 

1 

˜ h 

e −
∑ 

k | a k | 2 
[

ˆ H 

({
∂ 

∂a q 
, a q 

})
− ˆ H 

({
a ∗q , 

∂ 

∂a ∗q 
, 

})]
e 

∑ 

k | a k | 2 

= 

∑ 

q 

[
ω q a q 

∂ 

∂a q 
− c.c 

]

+ 

˜ h β

2 

∑ 

q 

A q 

[
2 a q 1 a q 2 a 

∗
q 3 

∂ 

∂a q 4 
+ a q 1 a q 2 

∂ 

∂a q 3 

∂ 

∂a q 4 
− c.c 

]
. (2.10) 

In the limit ˜ h → 0 , the second derivative terms vanish, 
˜ h a q 1 a q 2 

∂ 
∂a q 3 

∂ 
∂a q 4 

→ 0 , and the operator (2.10) reduces to the 

classical Liouville operator [10] . 

2.2. Liouville equation 

To construct a quantum kinetic equation, or master equation, 

we consider the density operator ˆ ρ = | ˆ ψ | 2 and map it on the basis 

of the coherent states | a 〉 in Eq. (2.5) , such that 

P(t) ≡ P(a ∗, a , t) = 〈 a | ̂  ρ(t) | a 〉 . (2.11) 

Therefore, from the mapping rules one obtains the Liouville equa- 

tion for the mean probability density 

∂ t P(t) = 

ˆ L P(t) . (2.12) 

Here the quantum “Liouville” operator is determined in Eq. (2.10) 

ˆ L = −i ̂  K . (2.13) 

The initial condition is constructed as a superposition 

P(x, t = 0) = P 0 (x ) = 

∑ 

k,k ′ 
F (0) 

k,k ′ �k (x )�∗
k ′ (x ) , (2.14) 

where F (0) 
k,k ′ = a k a 

∗
k ′ . Eventually, we obtain that the quantum NLSE 

(2.1) is replaced by the Liouville Eq. (2.12) , which is the linear 

equation with a formal solution in the exponential form 

P(x, t) = e 
ˆ L t P 0 (x ) = 

∑ 

k,k ′ 
�k (x )�k ′ (x ) = 

∞ ∑ 

n =0 

[ 
t n 

n ! 
ˆ L n 

] 
F (0) 

k,k ′ . (2.15) 

The Liouville operator can be considered as a sum of two operators 
ˆ L = ̂

 L 0 + ̂

 L 1 , where ˆ L 0 corresponds to the dynamics inside a cluster, 

determined by the overlapping integrals of the order of 1, while ˆ L 1 
corresponds to jumps between these clusters due to the exponen- 

tially small overlapping integrals. Thus considering this dynamics 

in the “interaction picture”, where ˆ L 1 (t) = e −ˆ L 0 t ˆ L 1 e 
ˆ L 0 t , one obtains 



Download English Version:

https://daneshyari.com/en/article/5499880

Download Persian Version:

https://daneshyari.com/article/5499880

Daneshyari.com

https://daneshyari.com/en/article/5499880
https://daneshyari.com/article/5499880
https://daneshyari.com

