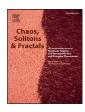
ELSEVIER

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos



Quantum continuous time random walk in nonlinear Schrödinger equation with disorder

A. Iomin*

Department of Physics, Technion, Haifa, 32000, Israel

ARTICLE INFO

Article history: Received 22 March 2016 Accepted 30 September 2016

Keywords:
Quantum nonlinear Schrödinger equation
Liouville equation
Quantum continuous time random walk
Quantum four-mode decay
Fractional Fokker-Planck equation
Subdiffusion

ABSTRACT

A quantum nonlinear Schrödinger equation in the presence of disorder is considered. The dynamics of an initially localized wave packet is studied and subdiffusion of the wave packet is obtained with a transport exponent 1/2. It is shown that this transport exponent has pure quantum nature. A probabilistic description of subdiffusion in the framework of a quantum continuous time random walk is suggested and a quantum master equation is obtained.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In modern optical experiments on a quantum wave propagation in nonlinear media a suitable description can be suggested in the framework of the fractional kinetics based on fractional integro-differentiation. This concept of differentiation of non-integer orders arises from works of Leibniz, Liouville, Riemann, Grunwald, and Letnikov, see e.g., [1–3]. Its application is related to random processes with power law distributions. This corresponds to the absence of characteristic average values for processes exhibiting many scales [4,5].

A typical example of fractional dynamics in optics is realized in a competition between localization and nonlinearity that leads to anomalous transport [6–12] (See also a recent review [13]). This dynamics is described in the framework of the nonlinear Schrödinger equation (NLSE) in the presence of an external field $V=V(x),\ x\in (-\infty,+\infty)$. The wave spreading, described by the wave function, is governed by the nonlinear Schrödinger equation in the presence of disorder

$$i\partial_t \psi = -\partial_x^2 \psi + \beta |\psi|^2 \psi + V \psi , \qquad (1.1)$$

where β is a nonlinearity parameter. The variables are chosen in dimensionless units and the Planck constant is $\hbar=1$. The random potential $V=V(x),\ x\in (-\infty,+\infty)$ leads to Anderson localization for the linear case $(\beta=0)$ [14,15]. The system is described by the exponentially localized Anderson modes (AM)s $\Psi_{\omega_k} \equiv \Psi_k(x)$, such

 $\hbox{\it E-mail address:} iomin@physics.technion.ac.il$

that $[-\partial_x^2 + V(x)]\Psi_k(x) = \omega_k\Psi_k(x)$, where $\Psi_{\omega_k}(x)$ are real functions and the eigenspectrum ω_k is discrete and dense [15]. The problem in question is an evolution of an initially localized wave function $\psi(t=0) = \psi_0(x)$. It can be also a stationary state of the NLSE, which is localized with the same Lyapunov exponent [16,17].

This problem is relevant to experiments in nonlinear optics, for example disordered photonic lattices [18,19], where Anderson localization was found in the presence of nonlinear effects, as well as to experiments on Bose-Einstein condensates in disordered optical lattices [20-23]. A discrete analog of Eq. (1.1) is extensively studied numerically [6-9,12], and a subdiffusive spreading of the initially localized wave packet has been observed, such that $\langle x^2(t) \rangle =$ $\int |\psi(t)|^2 x^2 dx \sim t^{\alpha}$, where a transport exponent α was found to be 2/5 [9] and 1/3 [8]. This difference has been explained in [24], where it has been shown that the former result is for the Markovian subdiffusion due to the range-dependent diffusion coefficient, while the latter one corresponds to non-Markovian fractional diffusion in a regime of percolation. In that case the dynamics of the wave packet has been approximated by the fractional Fokker-Planck equation (FFPE) due to the arguments of a so-called continuous time random walk (CTRW).

A subdiffusive spreading of the wave packet was also obtained analytically [10,24] in the limit of the large times asymptotic dynamics, where the transport exponent α has been found as well.

The concept of the CTRW was originally developed for mean first passage time in a random walk on a lattice with further application to a semiconductor electronic motion [25]. The mathematical apparatus of the fractional CTRW is well established for many applications in physics, see e.g., [4,5,26–28].

^{*} Fax.: +972 4 829 5755.

In the present research we present the physical mechanism of subdiffusion of a quantum wave packet spreading and propose a quantum master equation based on the CTRW consideration, related to the quantum properties of the nonlinear interaction term in Eq. (1.1). To this end we consider a quantum counterpart of the NLSE (1.1) (quantum NLSE), when the wave functions $\psi(x)$ are considered as operators $\hat{\psi}(x)$ satisfying to the commutation rule $[\hat{\psi}(x), \hat{\psi}^{\dagger}(x')] = \delta(x - x')$. The paper consists of two parts. The first one is a quantum analysis which is based on mapping of the quantum system on the basis of the coherent states, and in the framework of the obtained equations we study four-mode decays to understand quantum continuous time walks and construct a generalized master equation as a quantum counterpart of the Liouville equation. The second part is a classical analysis of the c-number Liouville equation for the mean probability amplitude $\langle |\hat{\psi}(x,t)|^2 \rangle$, where the transition elements in the Liouville operator are overlapping integrals of the AMs. Therefore, the further analysis is an application of the CTRW approach to the corresponding Liouville equation [29]. We also show that subdiffusion of the quantum wave packet with a transport exponent $\alpha = 1/2$ has a quantum nature.

2. Quantum NLSE

We concern with a quantum counterpart of the NLSE (1.1). In this case, an initial wave spreading is governed by the quantum nonlinear Schrödinger equation

$$i\tilde{h}\partial_t\hat{\psi} = \hat{H}_0\hat{\psi} + \beta|\hat{\psi}|^2\hat{\psi}, \qquad (2.1)$$

where $[\hat{\psi}(x), \hat{\psi}(x')] = \delta(x-x')$. The Hamiltonian \hat{H}_0 corresponds to the Anderson localization problem $\hat{H}_0\Psi_{\omega_k}(x) = \omega_k\Psi_{\omega_k}(x)$, where $\Psi_{\omega_k}(x)$ are the AMs, presented in Introduction. One should recognize that the classical NLSE (1.1) is independent of the Planck constant. Therefore, for the quantum analysis, an effective dimensionless Planck constant \tilde{h} is introduced explicitly. Projecting Eq. (2.1) on the basis of the AMs

$$\hat{\psi}(x,t) = \sum_{\omega_k} \hat{c}_{\omega_k}(t) \Psi_{\omega_k}(x) \equiv \sum_k \hat{c}_k(t) \Psi_k(x) , \qquad (2.2)$$

we obtain a system of equations for the operators of the expansion $\hat{\mathcal{C}}_k$, where $[\hat{\mathcal{C}}_k, \hat{\mathcal{C}}_l^\dagger] = \delta_{k,l}$. This system of the Heisenberg equations $i\tilde{h}\hat{\mathcal{C}}_k = [\hat{\mathcal{C}}_k, \hat{\mathcal{H}}]$ is governed by the quantum Hamiltonian

$$\hat{H} = \sum_{k} \tilde{h} \omega_{k} \hat{C}_{k}^{\dagger} \hat{C}_{k} + \frac{\tilde{h}^{2} \beta}{2} \sum_{k} A_{k} \hat{C}_{k_{1}}^{\dagger} \hat{C}_{k_{2}}^{\dagger} \hat{C}_{k_{3}} \hat{C}_{k_{4}}, \qquad (2.3)$$

where $A(\mathbf{k}) \equiv A_{k_2,k_3}^{k,k_1}$ is an overlapping integral of the four AMs:

$$A_{k_2,k_3}^{k,k_1} = \int \Psi_k(x)\Psi_{k_1}(x)\Psi_{k_2}(x)\Psi_{k_3}(x)dx.$$
 (2.4)

For $\tilde{h}=0$, Eq. (2.3) reduces to the classical NLSE (1.1). The linear frequency is shifted by the nonlinear term due to the commutation $\omega_k \to \omega_k + \tilde{h}\beta A_0$, where $A_0 = A_{kk}^{kk}$ is the diagonal overlapping integral in Eq. (2.4).

2.1. Phase space dynamics and the Liouville operator

For the quantum mechanical analysis we use a technique of mapping the Heisenberg equation of motion on a basis of the coherent states [30–32]. At the initial moment t=0, one introduces the coherent states vector $|\mathbf{a}\rangle = \prod_q |a_q\rangle$ as the product of eigenfuctions of annihilation operators $\hat{a}_q = \hat{C}_q(t=0)$, such that $\hat{a}_q |a_q\rangle = a_q |a_q\rangle$ and correspondingly $\hat{a}_q |\mathbf{a}\rangle = a_q |\mathbf{a}\rangle$, where also the coherent state is constructed from a vacuum state $|0\rangle$

$$|a_q\rangle = \exp[a_q \hat{a}_q^{\dagger} - a_q^* \hat{a}_q]|0\rangle, \quad \hat{a}_q|0\rangle = 0.$$
 (2.5)

Introducing c-functions

$$C_a(t) = \langle \mathbf{a} | \hat{C}_a(t) | \mathbf{a} \rangle = C_a(t | \mathbf{a}^*, \mathbf{a}), \qquad (2.6)$$

one maps the Heisenberg equation of motion on the basis $|a\rangle$ as follows

$$i\tilde{h}\dot{C}_{q}(t) = \langle \mathbf{a}|\hat{C}_{q}(t)\hat{H} - \hat{H}\hat{C}_{q}(t)|\mathbf{a}\rangle. \tag{2.7}$$

Accounting Eqs. (2.5) and (2.6), one obtains the mapping rules

$$\langle \mathbf{a} | \hat{\mathcal{C}}_{q}(t) \hat{a}_{q}^{\dagger} | \mathbf{a} \rangle = e^{-|a_{q}|^{2}} \frac{\partial}{\partial a_{q}} e^{|a_{q}|^{2}} \mathcal{C}_{q}(t) ,$$

$$\langle \mathbf{a} | \hat{a}_{q} \hat{\mathcal{C}}_{q}(t) | \mathbf{a} \rangle = e^{-|a_{q}|^{2}} \frac{\partial}{\partial a_{q}^{*}} e^{|a_{q}|^{2}} \mathcal{C}_{q}(t) .$$

$$(2.8)$$

The Hamiltonian is the integral of motion $\hat{H}(\{\hat{C}_q^{\dagger},\hat{C}_q\}) = \hat{H}(\{\hat{a}_q^{\dagger},\hat{a}_q\})$, therefore the mapping rules (2.8) yield equation of motion (2.7) for $\mathcal{C}_q(t)$ in the closed form

$$i\dot{C}_q(t) = \hat{K}C(t), \qquad (2.9)$$

where

$$\hat{K} = \frac{1}{\tilde{h}} e^{-\sum_{k} |a_{k}|^{2}} \left[\hat{H} \left(\left\{ \frac{\partial}{\partial a_{q}}, a_{q} \right\} \right) - \hat{H} \left(\left\{ a_{q}^{*}, \frac{\partial}{\partial a_{q}^{*}}, \right\} \right) \right] e^{\sum_{k} |a_{k}|^{2}}$$

$$= \sum_{q} \left[\omega_{q} a_{q} \frac{\partial}{\partial a_{q}} - c.c \right]$$

$$+ \frac{\tilde{h}\beta}{2} \sum_{\mathbf{q}} A_{\mathbf{q}} \left[2a_{q_{1}} a_{q_{2}} a_{q_{3}}^{*} \frac{\partial}{\partial a_{q_{4}}} + a_{q_{1}} a_{q_{2}} \frac{\partial}{\partial a_{q_{3}}} \frac{\partial}{\partial a_{q_{4}}} - c.c \right]. (2.10)$$

In the limit $\tilde{h}\to 0$, the second derivative terms vanish, $\tilde{h}a_{q_1}a_{q_2}\frac{\partial}{\partial a_{q_3}}\frac{\partial}{\partial a_{q_4}}\to 0$, and the operator (2.10) reduces to the classical Liouville operator [10].

2.2. Liouville equation

To construct a quantum kinetic equation, or master equation, we consider the density operator $\hat{\rho} = |\hat{\psi}|^2$ and map it on the basis of the coherent states $|\mathbf{a}\rangle$ in Eq. (2.5), such that

$$\mathcal{P}(t) \equiv \mathcal{P}(\mathbf{a}^*, \mathbf{a}, t) = \langle \mathbf{a} | \hat{\rho}(t) | \mathbf{a} \rangle. \tag{2.11}$$

Therefore, from the mapping rules one obtains the Liouville equation for the mean probability density

$$\partial_t \mathcal{P}(t) = \hat{\mathcal{L}} \mathcal{P}(t) \,. \tag{2.12}$$

Here the quantum "Liouville" operator is determined in Eq. (2.10)

$$\hat{L} = -i\hat{K} \,. \tag{2.13}$$

The initial condition is constructed as a superposition

$$\mathcal{P}(x,t=0) = \mathcal{P}_0(x) = \sum_{k,k'} F_{k,k'}^{(0)} \Psi_k(x) \Psi_{k'}^*(x), \qquad (2.14)$$

where $F_{k,k'}^{(0)} = a_k a_{k'}^*$. Eventually, we obtain that the quantum NLSE (2.1) is replaced by the Liouville Eq. (2.12), which is the *linear* equation with a formal solution in the exponential form

$$\mathcal{P}(x,t) = e^{\hat{L}t} \mathcal{P}_0(x) = \sum_{k,k'} \Psi_k(x) \Psi_{k'}(x) = \sum_{n=0}^{\infty} \left[\frac{t^n}{n!} \hat{L}^n \right] F_{k,k'}^{(0)}.$$
 (2.15)

The Liouville operator can be considered as a sum of two operators $\hat{L}=\hat{L}_0+\hat{L}_1$, where \hat{L}_0 corresponds to the dynamics inside a cluster, determined by the overlapping integrals of the order of 1, while \hat{L}_1 corresponds to jumps between these clusters due to the exponentially small overlapping integrals. Thus considering this dynamics in the "interaction picture", where $\hat{L}_1(t)=e^{-\hat{L}_0t}\hat{L}_1e^{\hat{L}_0t}$, one obtains

Download English Version:

https://daneshyari.com/en/article/5499880

Download Persian Version:

https://daneshyari.com/article/5499880

<u>Daneshyari.com</u>