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a b s t r a c t 

Motivated by issues arising in population dynamics, we consider the problem of iterating a given analytic 

function a number of times. We use the celebrated technique known as Carleman linearization that turns 

(for a certain class of functions) this problem into simply taking the power of a real number. We expand 

this method, showing in particular that it can be used for population models with immigration, and we 

also apply it to the famous logistic map. We also are able to give a number of results for the invariant 

density of this map, some being related to the Carleman linearization. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

We consider simple 1-dimensional discrete-time dynamics: 

x n +1 = φ( x n ) , x 0 = x, with the evolution mechanism φ( ·) being 

an analytic function. Our main interest in these problems arises 

from population dynamics models describing the temporal evo- 

lution of some population with size x n ≥ 0. We first assume 

φ( 0 ) = 0 (no immigration). Such non-linear models are amenable 

to a Carleman linearization giving x n from the initial condition 

x in terms of the n th power of some upper-triangular infinite- 

dimensional transfer matrix which can be diagonalized. Equiva- 

lently, φ is h -conjugate to the linear map λx for some Carleman 

function h , would λ = φ′ (0) � = {−1 , 0 , 1 } . The coefficients of h , as 

a power series in x , are obtained from the left eigenvector of P 

with the eigenvalue λ. The Carleman linearization technique goes 

back the60’ [7,9,10,12] . When λ = 1 (the critical case), we give the 

linear Carleman representation of x n , using a ‘Jordanization’ tech- 

nique. Special such models arising in population dynamics are de- 

fined and investigated.We next consider the problem of comput- 

ing the invariant density (and its support)of the dynamics in a 

chaotic population model regime, including quadratic maps. The 

study of the invariant measures of quadratic and related maps has 

a very long story starting in the 70’ [2–4,11,16] . We show that in 

some special cases, the h -conjugate representation of φ is use- 

ful for that purpose. We illustrate our point of view on the cel- 

∗ Corresponding author. Fax: +330134257500. 

E-mail addresses: Nicolas.Grosjean@u-cergy.fr (N. Grosjean), Huillet@u-cergy.fr 

(T. Huillet). 

ebrated logistic population model φ( x ) = rx ( 1 − x ) . Next we con- 

sider φ0 ( x ) = c + φ( x ) , modeling some population dynamics with 

immigration c > 0. In the presence of a fixed point for φ0 , such 

models are also Carleman linearizable; equivalently, φ0 is shown 

to be g -conjugate now to an affine map for some explicit Carle- 

man function g . As an illustration, we finally deal with the logistic 

population model with immigration. We develop its intimate rela- 

tion to a family of companion logistic population models without 

immigration, the former being obtained from the latter through a 

suitable affine transformation. We exploit this deep connection to 

determine under which condition the logistic model with immi- 

gration is chaotic or not and, using this observation, we compute 

in some cases its invariant density. 

The precise organization of the paper is as follows: 

In Section 2 , we recall and develop the Carleman transfer ma- 

trix linearization technique, including: 

– its link with a conjugate representation of the map φ in the 

case φ( 0 ) = 0 and φ′ ( 0 ) � = { −1 , 0 , 1 } . 
– the application of this scheme to the specific critical case 

φ′ ( 0 ) = 1 , leading to a method akin to the Jordanization of a 

matrix. 

– the consequences of this construction in terms of the invariant 

measure of the dynamical system. 

– the application of this general setting to a class of specific pop- 

ulation evolution models. 

In Section 3 , using the above tools, we focus on the one- 

parameter logistic population model. Specifically, we characterize 

the loci and the types of the divergence of its invariant measure 
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0960-0779/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2016.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.10.004&domain=pdf
mailto:Nicolas.Grosjean@u-cergy.fr
mailto:Huillet@u-cergy.fr
http://dx.doi.org/10.1016/j.chaos.2016.10.004


72 N. Grosjean, T. Huillet / Chaos, Solitons and Fractals 93 (2016) 71–79 

and we give a way to compute the disconnected components of its 

support for some parameter r range. For some values of the param- 

eter r , we show how to compute explicitly the invariant density of 

the system. 

In Section 4 , expanding the tools introduced in Section 2 to in- 

clude maps obeying φ0 (0) � = 0, we study the effect of adding im- 

migration to population dynamics models, by relating it to a an 

affine conjugate equivalent of the new mechanism with immigra- 

tion φ0 (0) > 0. Once again, we apply these results to the logistic 

map. Our main result on this point is summarized in Fig. 1 show- 

ing the values of the parameters ( r, c ) for which this topological 

conjugation is admissible. As a consequence, the chaoticity of the 

logistic model with immigration is revealed by the one of the cor- 

responding model without immigration. 

2. Carleman matrix in the triangular case α0 = 0 

With αk , k ≥ 1, real numbers, let φ( x ) = 

∑ 

k ≥1 αk x 
k , α1 � = 0, 

be some smooth power series defined (convergent) in some neigh- 

borhood x −c < x < x + c , of the origin where −∞ ≤ x −c < 0 < x + c ≤ ∞ 

1 . 

We avoid the trivial linear case φ(x ) = α1 x . We shall let I c = 

(x −c , x 
+ 
c ) be the interval of convergence. Note α0 = 0 . Consider the 

dynamical system 

x n +1 = φ(x n ) , x 0 = x. (1) 

Define the infinite-dimensional (Carleman) upper-triangular matrix 

P (k, k ′ ) = [ x k 
′ 
] φ(x ) k , k ′ ≥ k ≥ 1 . (2) 

By Faà di Bruno formula (see e.g. [5] , Tome 1, p. 148), with ̂ B k,l (α1 , α2 , . . . ) the (ordinary) Bell polynomials in the coefficients 

αk := [ x k ] φ( x ) of φ( x ), 

P (k, k ′ ) = ̂

 B k ′ ,k (α1 , α2 , . . . , αk ′ −k +1 ) = k ! 

∗∗∑ 

c l 

k ′ −k +1 ∏ 

l=1 

αc l 
l 

c l ! 
, (3) 

where the last double-star summation runs over the integers c l ≥ 0 

such that 
∑ k ′ −k +1 

l=1 
c l = k and 

∑ k ′ −k +1 
l=1 

lc l = k ′ (there are p k,k ′ terms 

in this sum, the number of partitions of k ′ into k summands). In 

particular P (k, k ) = αk 
1 

and P (k, k + 1) = kα2 α
k −1 
1 

. P is called the 

Carleman 

2 matrix of φ. If for example, φ(x ) = x − x 2 , P (k, k ′ ) = ̂ B k ′ ,k (z, −1 , 0 , . . . ) | z=1 , the Hermite polynomials evaluated at z = 1 . 

We conclude (see [1,10,12,15] and [9] ): 

Proposition. With e ′ 1 = (1 , 0 , 0 , . . . ) and x ′ = (x, x 2 , . . . ) , 3 

x n = e ′ 1 P n x (4) 

where P is an upper-triangular ‘transfer’ matrix with P ( k, k ) = 

αk 
1 

=: λk , k ≥ 1 (the eigenvalues of P ). 

From (1) , x n is also x n = φn ( x ) where φn is the n th iterate of φ
by composition and so (4) is an alternative linear representation of 

x n . Note ∑ 

n ≥0 

λn x n = e ′ 1 ( I − λP ) 
−1 

x , 

involving the resolvent of P . 

Remark. We have 

1 

1 − uφ( x ) 
= 1 + 

∑ 

k ≥1 

u 

k φ( x ) 
k 

1 We also assume that φ is absolutely convergent with radius of convergence 0 < 

r c ≤ min (−x −c , x 
+ 
c ) 

2 Carleman matrices are easily seen to be the transpose of Bell matrices. 
3 Throughout, a boldface variable, say x , will represent a column-vector and its 

transpose, say x ′ , will be a row-vector. 

= 1 + 

∑ 

k ≥1 

u 

k 
∑ 

k ′ ≥k 

x k 
′ [

x k 
′ ]
φ( x ) 

k 

= 1 + 

∑ 

k ≥1 

u 

k 
∑ 

k ′ ≥k 

x k 
′ 
P 
(
k, k ′ 

)
= 1 + 

∑ 

k ′ ≥1 

x k 
′ 

k ′ ∑ 

k =1 

u 

k 
[
x k 

′ ]
φ( x ) 

k 

k ′ ∑ 

k =1 

u 

k P 
(
k, k ′ 

)
= [ x k 

′ 
] 

1 

1 − uφ( x ) 
. 

With φn ( x ) = x n , the n th iterate of φ and u 

′ := (u, u 2 , . . . ) 

1 

1 − uφn (x ) 
= 1 + 

∑ 

k ≥1 

u 

k 
∑ 

k ′ ≥k 

x k 
′ 
P n (k, k ′ ) 

= 1 + 

∑ 

k ′ ≥1 

x k 
′ 

k ′ ∑ 

k =1 

u 

k P n (k, k ′ ) 

= 1 + u 

′ P n x . 

Taking the derivative with respect to u at u = 0 gives φn ( x ) = x n = 

e ′ 1 P n x . Taking the k th derivative with respect to u at u = 0 gives 

x k n = e ′ 
k 
P n x . We conclude: 

Proposition. If ψ ( x ) = 

∑ 

k ≥1 ψ k x 
k is some smooth observable, 

defining ψ 

′ = ( ψ 1 , ψ 2 , . . . ) , therefore 

ψ ( x n ) = 

∑ 

k 

ψ k e 
′ 
k P 

n x = ψ 

′ P n x . (5) 

This generalizes (4) . 

By Cauchy formula, whenever φ is defined on the unit circle, 

we also have the Fourier representation 

P 
(
k, k ′ 

)
= 

1 

2 π

∫ 2 π

0 

e ik 
′ θφ(e −iθ ) k dθ . 

Chaos for (1) is sometimes characterized by the positivity of its 

Lyapounov exponent defined by 

λ( x ) = lim 

N→∞ 

1 

N 

N−1 ∑ 

n =0 

log | φ′ ( x n ) | 

for almost all x . Considering the sensitivity to the initial condition 

problem, we have J n +1 := d x n +1 /d x = φ′ (x n ) d x n /d x = φ′ (x n ) J n . 

Therefore | J N | = ( 
∏ N−1 

n =0 | φ′ (x n ) | ) and λN (x ) := 

1 
N log | J N | → λ(x ) . 

Letting x ′ = (x, x 2 , . . . ) , x 
′ 

:= (1 , x, x 2 , . . . ) and D := diag 

(1 , 2 , 3 , . . . ) so that d x /d x = D x , we observe 

J N := d x N /d x = e ′ 1 P N D x . 

2.1. The case | λ| � = 1 

Suppose λ := α1 � = ±1 and let v ′ 
k 
P = λk v ′ 

k 
, define the left-row- 

eigenvector v ′ 
k 

of P associated to the eigenvalue λk := λk . Then, 

with k ′ > k ≥ 1, 

v k (k ′ ) = (λk − λk ′ ) −1 
k ′ −1 ∑ 

l=1 

P (l , k ′ ) v k (l ) 

gives the entries v k ( k 
′ ), k ′ > k ≥ 1, of v ′ 

k 
by recurrence; and v k ( k ) 

can be left undeterminate. Developing, for k ′ > k , we get 

Proposition. Suppose λ = α1 � = 1 , then 

v k 
(
k ′ 

)
= v k ( k ) 

k ′ −k +1 ∑ 

j=2 

∗∑ 

d 1 + ···+ d j−1 = k ′ −k 

j−1 ∏ 

l=1 

× P (d 1 + · · · + d l−1 + k, d 1 + · · · + d l + k ) 

λk − λd 1 + ···+ d l + k 
, or 
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