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a b s t r a c t 

The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and 

compare it with that of classical or standard diffusive processes in two-component fractional reaction- 

diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use 

of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an ef- 

ficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, 

and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing 

solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine 

precision regardless of the fractional order α, owing to the fact that our approach is able to give full 

diagonal representation of the fractional operator. The complexity of the dynamics in this system is theo- 

retically discussed and graphically displayed with some examples and numerical simulations in one, two 

and three dimensions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The physical world is apparently described by nonlinear mod- 

els which either exist in the form of ordinary or partial differential 

equations. Nonlinear partial differentialequations (PDEs) and most 

dynamical models display a number of phenomena that are not 

readily available in the theories of linear systems; a large num- 

ber of these nonlinear phenomena are apparently related to some 

important features of the real world situations that are described 

by the mathematical models in biology and ecology. The study of 

nonlinear properties especially in the various fields of science and 

engineering has been and will continue to be a means of arriving 

at new problems, and that has actually motivated researchers of 

various disciplines over the years to seek for appropriate methods 

of solution and analysis of such models. 

In this paper, emphasis is given to the numerical solution 

two components reaction-diffusion (RD) systems: The first is the 
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classical or standard RD system, written in its general form 

∂u 

∂t 
= δ1 �u + f (u, v ) , ℘ ∈ �, t > 0 

∂v 
∂t 

= δ2 �u + g(u, v ) , ℘ ∈ �, t > 0 

∂u 

∂ν
= 

∂u 

∂ν
= 0 , ℘ ∈ ∂�, t > 0 , 

u (℘, 0) = u 0 (℘) ≥ 0 , v (℘, 0) = v 0 (℘) ≥ 0 , ℘ ∈ �. 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(1.1) 

where u ( ℘, t ) and v ( ℘, t ) are the respective population densities 

of prey and predators in position (vector) ℘ and time t , � = 

∂ 2 

∂℘ 2 
; u (℘, t) , v (℘, t) ∈ R denotes the two variables Laplacian opera- 

tor in some space dimensions, whilst δ1 and δ2 are strictly positive 

parameters that represent the diffusion coefficients of both prey 

and predator. The functions f ( u, v ), g ( u, v ) are the nonlinear sources 

of the system that model their production rates. We assume the 

domain � is bounded and open subset of R 

d , d ≤ 3 . The choice of 

Neumann boundary condition here indicates that the species envi- 

ronment � is confined and ν is the outward unit normal to ∂�. 

The initial values u 0 ( ℘), v 0 ( ℘) are assumed to be strictly positive 

and bounded in �. 
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If E is a subset of R 

d and f : E → R 

n , f := (u, v ) , a function de- 

fined on E with values in R 

n . Then we propose the following useful 

definitions: 

Definition 1.1. The function f : E → R 

n is continuous at a ∈ E if for 

every neighborhood V ( f ( a )) of the value f ( a ) that the function assumes 

at a , ∃ a neighborhood U E ( a ) of a in E whose image f ( U E ( a )) is con- 

tained in V ( f ( a )) . 

Thus, 

(f : E → R 

n is continuous at a ∈ E) 

:= (∀ V ( f (a ) ) ∃ U E (a ) f (U E (a )) ⊂ V (f (a ))) . 

Definition 1.2. A domain in R 

d is an open connected set. 

The second model is the fractional-in-space reaction-diffusion 

system. A space fractional diffusion system can be derived by re- 

placing the second-order spatial derivatives in (1.1) by its fractional 

counterpart, regarded as the Riemann–Liouville fractional deriva- 

tives in space with order α [13,37] 

∂u 

∂t 
= δ1 �

α/ 2 u + f (u, v ) , 

∂v 
∂t 

= δ2 �
α/ 2 v + g(u, v ) , 

⎫ ⎬ 

⎭ 

(1.2) 

subject to the initial and boundary conditions in (1.1) , where δ1 , 

δ2 are regarded as the conductivities or diffusion tensors, and 

�α = ( ∂ 
α

∂x α
, ∂ 

α

∂y α
, ∂ 

α

∂z α
) T , 1 < α ≤ 2 is the Riemann–Louiville fractional 

gradient, for 

∂ α

∂x α
u (x, y, z) = 

1 

	(1 − α) 

∂ 

∂x 

∫ x 

0 

u (s, y, z) 

(x − s ) α
ds, 

with 

∂ α

∂y α
and 

∂ α

∂z α
having similar expressions. 

One of the major advantages of using the Riemann–Liouville 

fractional derivative within the variation principles is due to the 

possibility of defining the integration by parts as the fractional 

reaction-diffusion problems becomes the classical or standard type 

when α is an integer [2,30] . More importantly, it satisfies all 

the mathematical principle under the scope of fractional calculus, 

more importantly when using Laplace transform we obtain initial 

condition with fractional exponent which is actually realistic in 

practical and mathematical point of view because we are in the 

scope of fractional calculus. As a result, most researchers [1,32] en- 

dorsed the use of the Riemann–Liouville definition due to its flex- 

ibility and suitability. 

The study of fractional calculus has a long standing history, 

from its birth - which has raised a simple question from L’Hospital 

to Leibnitz - to its today’s wide use in many applied scientific 

fields, fractional calculus has come a long way. In-fact, the field 

of fractional calculus could be described as old as classical calcu- 

lus itself. In the last decades, the usefulness of this mathemat- 

ical theory in applications has gained a lot of weight and has 

since become more evident and well-pronounced in both field 

of pure and applied mathematics. In recent times, a lot text- 

books and research papers have been published in this active 

field of research that deal with various aspects in different ways, 

see for example [15,25–27,34–37] . Also in the past, several nu- 

merical techniques have been adopted for solution of fractional 

reaction-diffusion equations, among them are the work of Fu et al. 

[7] where a domain-type meshless method in conjunction with fi- 

nite difference method for constant— and variable-order fractional 

reaction-diffusion models was used. Based on the Kansa method, 

the authors in [23] present a domain-type meshless method to 

solve time fractional reaction-diffusion models. A boundary-only 

collocation method in conjunction with Laplace transformation to 

solve time fractional reaction-diffusion models was introduced in 

[6] . Other numerical techniques designed to solve both time and 

space fractional reaction-diffusion problems are well classified in 

[3,5,24] and references therein. 

The idea of integral and non-integer differential operators stud- 

ied in the field of fractional calculus is given by Cauchy’s convolu- 

tion integral 

J n y (x ) = 

∫ x 

0 

∫ x n −1 

0 

· · ·
∫ x 1 

0 

y (x 0 ) d x 0 · · · d x n −2 d x n −1 

= 

1 

(n − 1)! 

∫ x 

0 

1 

(x − t) 1 −n 
y (t ) dt , n ∈ N , x ∈ R + , 

where representation J n denotes the n −fold integer with J 0 y (x ) = 

y (x ) . When the discrete factorial (n − 1)! is replaced with the Eu- 

ler’s gamma function 	( n ), for n ∈ N , we get a definition for a non- 

integer order integral, that is 

J αy (x ) = 

1 

	(α) 

∫ x 

0 

1 

(x − t) 1 −α
y ( t ) dt , α, x ∈ R + . (1.3) 

From non-integer derivative (1.3) , other important aspects of frac- 

tional calculus originate from it, see for example the integer order 

differentiation and fractional integration 

D 

αy (x ) = D 

n J n −αy (x ) or D 

α
∗ y (x ) = J n −αD 

n y (x ) , 

where n is the integer that satisfies α ≤ n < α + 1 and D 

n , n ∈ N 

stands for the n −fold differential operator with D 

0 y ( x ). The oper- 

ator D 

α is usually referred to as the Riemann–Liouville operator, 

while D 

α∗ is known to be the Caputo differential operator. For pre- 

liminary theories and definitions on fractional derivatives, readers 

are referred to some classical books [15,17,25–27,37] . 

The interest of this work is devoted to the study of fractional 

RD (1.2) , we only need to compare the results obtained for classi- 

cal reaction-diffusion equation when α = 2 with that of fractional 

reaction-diffusion system in the range 1 < α ≤ 2 called super- 

diffusion scenario. 

The aim of the this paper is to present a Fourier spectral 

method as an alternative approach to existing finite difference 

scheme for the numerical solution of (1.2) in one, two and three 

space dimensions. We also intend to make comparison between 

the two numerical methods, verify if pattern formation in the dif- 

fusive and super-diffusive scenarios are practically the same. 

2. Numerical techniques for fractional reaction-diffusion 

Spectral methods are applicable whenever high accuracy is re- 

quired to compute smooth solutions of the partial differential 

equations. They are valuable for formulating numerical methods 

in almost all application areas of mathematics, be it in engineer- 

ing, science and technology. It has ability to spectrally differenti- 

ate the fractional derivative operator accurately. Spectral methods 

are approximation techniques used for the computation of the so- 

lutions to both ODEs and PDEs, based on the polynomial expan- 

sion of the solution. The precision of these methods is limited only 

by the regularity of the solution, in contrast to the finite differ- 

ence method and the finite element methods. The approximation 

is based primarily on the variational formulation of the continu- 

ous problem. The test functions are polynomials and the integrals 

involved in the formulation are computed by suitable quadrature 

formulas. This paper proposes to implement a spectral method to 

solve fractional RD problem. 

2.1. Discretization in space 

Assume the fractional Laplacian operator �α/2 is a complete 

set of orthonormal eigenfunctions { ψ j } which satisfy the standard 

boundary conditions defined on a bounded region D ⊂ R 

d , d ≤ 3 , 
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