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a b s t r a c t 

The design of routing strategies for traffic-driven epidemic spreading has received increasing attention in 

recent years. In this paper, we propose an adaptive routing strategy that incorporates topological distance 

with local epidemic information through a tunable parameter h . In the case where the traffic is free 

of congestion, there exists an optimal value of routing parameter h , leading to the maximal epidemic 

threshold. This means that epidemic spreading can be more effectively controlled by adaptive routing, 

compared to that of the static shortest path routing scheme. Besides, we find that the optimal value of 

h can greatly relieve the traffic congestion in the case of finite node-delivering capacity. We expect our 

work to provide new insights into the effects of dynamic routings on traffic-driven epidemic spreading. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Epidemic spreading [1–14] and traffic dynamics [15–21] on 

complex networks [22–24] have attracted much attention in the 

past decade. For a long time, the two types of dynamical processes 

have been studied independently. However, epidemic spreading of- 

ten depends on traffic transportation. For example, a computer 

virus can spread over Internet via data transmission. Another ex- 

ample is that air transport tremendously accelerates the propaga- 

tion of infectious diseases among different countries. 

The first attempt to incorporate traffic into epidemic spread- 

ing is based on metapopulation model [25] . This framework de- 

scribes a set of spatially structured interacting subpopulations as 

a network, whose links denote the traveling path of individuals 

across different subpopulations. Each subpopulation consists of a 

large number of individuals. An infected individual can infect other 

individuals in the same subpopulation. The metapopulation model 

is often used to simulate the spread of human and animal diseases 

(such as SARS and H1N1) among different cities. In a recent work, 

Meloni et al. proposed another traffic-driven epidemic spreading 

model which can be applied to study the propagation of computer 

virus on the Internet [26] . In Meloni model, each node of a net- 

work represents a router on the Internet and the epidemic can 
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spread between nodes by the transmission of packets. A suscep- 

tible node will be infected with some probability every time it re- 

ceives a packet from an infected neighboring node. 

Meloni model has received increasing attention in recent 

years [27–32] . It has been found that the routing strategy can 

greatly effects epidemic spreading [33,34] . Three routing algo- 

rithms have been used in Meloni model. The first is the shortest- 

path routing algorithm. The second is the local routing proto- 

col [35] , in which each node does not know the whole network’s 

topological information and the packet is forwarded to a neighbor- 

ing node i with a probability that is proportional to the power of 

i ’s degree. The third is the efficient routing protocol [36] , in which 

each node in a network is assigned a weight that is proportional 

to the power of its degree and The efficient path between any two 

nodes corresponds to the route that makes the sum of the nodes’ 

weight (along the path) minimal. 

All the above routing strategies are based on the network struc- 

ture and packets follow the fixed routes for a given network. In 

this paper, we propose an adaptive routing strategy that integrates 

topological distance with local epidemic information through a 

tunable parameter h . In the adaptive routing strategy, a packet can 

timely adjust its route according to the epidemic information of its 

neighbors. Interestingly, we find that there exists an optimal value 

of h , leading to the maximal epidemic threshold. 

The paper is organized as follows. In Section 2 , we formalize the 

problem by introducing the adaptive routing strategy into traffic- 

driven epidemic spreading. In Section 3 and Section 4 , we present 
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Fig. 1. The epidemic threshold βc as a function of the routing parameter h for dif- 

ferent values of the packet-generation rate λ. The node-delivering capacity is infi- 

nite. 

Fig. 2. The density of infected nodes ρk as a function of the degree k for differ- 

ent values of the routing parameter h . The packet-generation rate λ = 0 . 5 and the 

spreading rate β = 0 . 13 . The node-delivering capacity is infinite. 

the results for infinite and finite node-delivering capacity respec- 

tively. Finally, we give a conclusion in Section 5 . 

2. Model 

Following the work of Meloni et al. [26] , we incorporate the 

traffic dynamics into the classical susceptible-infected-susceptible 

model [37] of epidemic spreading as follows. 

(i) Adaptive routing protocol. In a network of size N , at each 

time step, λN new packets are generated with randomly chosen 

sources and destinations (we call λ as the packet-generation rate), 

and each node can deliver at most C packets towards their des- 

tinations. To deliver a packet to its destination, a node performs 

a local search within its neighbors. If the packet’s destination is 

found inside the searched area, it will be delivered directly to the 

destination. Otherwise, the packet is forwarded to a neighboring 

node i toward its destination j with the smallest value of effective 

distance, denoted by 

d i j 

e f f 
= h · D i j + (1 − h ) δi , (1) 

where h is the routing parameter (0 ≤ h ≤ 1), D ij is the topologi- 

cal distance between nodes i and j , and δi = 1 ( δi = 0 ) if node i is 

infected (uninfected) in the previous time step. 

Fig. 3. The average traveling time of a packet 〈 T 〉 as a function of the spreading 

rate β for different values of the routing parameter h . The packet-generation rate 

λ = 0 . 5 . The node-delivering capacity is infinite. 

Fig. 4. The epidemic threshold βc as a function of the packet-generation rate λ for 

different values of the routing parameter h . The slopes of the fitted lines are about 

−1 . The node-delivering capacity is infinite. 

It is worth noting that when h = 1 , the adaptive routing recov- 

ers to the traditional shortest path routing. Once a packet reaches 

its destination, it is removed from the system. The queue length 

of each node is assumed to be unlimited and the first-in-first-out 

principle holds for the queue. 

(ii) Epidemic dynamics. After a transient time, the total number 

of delivered packets at each time will reach a steady value, then 

an initial fraction of nodes ρ0 is set to be infected (e.g., we set 

ρ0 = 0 . 1 in numerical experiments). The infection spreads in the 

network through packet exchanges . Each susceptible node has the 

probability β of being infected every time it receives a packet from 

an infected neighbor. The infected nodes recover at rate μ (we set 

μ = 1 in this paper). 

In the following, we carry out simulations systematically by 

employing traffic-driven epidemic spreading on the Barabási-Albert 

(BA) scale-free networks [38] . The size of the BA network is set 

to be N = 20 0 0 and the average degree of the network is 〈 k 〉 = 4 . 

Each data point results from an average over 30 different realiza- 

tions. 
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