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The design of routing strategies for traffic-driven epidemic spreading has received increasing attention in
recent years. In this paper, we propose an adaptive routing strategy that incorporates topological distance
with local epidemic information through a tunable parameter h. In the case where the traffic is free
of congestion, there exists an optimal value of routing parameter h, leading to the maximal epidemic
threshold. This means that epidemic spreading can be more effectively controlled by adaptive routing,

PACS: compared to that of the static shortest path routing scheme. Besides, we find that the optimal value of
89.75.Hc h can greatly relieve the traffic congestion in the case of finite node-delivering capacity. We expect our
89.75.Fb work to provide new insights into the effects of dynamic routings on traffic-driven epidemic spreading.
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1. Introduction

Epidemic spreading [1-14] and traffic dynamics [15-21] on
complex networks [22-24] have attracted much attention in the
past decade. For a long time, the two types of dynamical processes
have been studied independently. However, epidemic spreading of-
ten depends on traffic transportation. For example, a computer
virus can spread over Internet via data transmission. Another ex-
ample is that air transport tremendously accelerates the propaga-
tion of infectious diseases among different countries.

The first attempt to incorporate traffic into epidemic spread-
ing is based on metapopulation model [25]. This framework de-
scribes a set of spatially structured interacting subpopulations as
a network, whose links denote the traveling path of individuals
across different subpopulations. Each subpopulation consists of a
large number of individuals. An infected individual can infect other
individuals in the same subpopulation. The metapopulation model
is often used to simulate the spread of human and animal diseases
(such as SARS and H1N1) among different cities. In a recent work,
Meloni et al. proposed another traffic-driven epidemic spreading
model which can be applied to study the propagation of computer
virus on the Internet [26]. In Meloni model, each node of a net-
work represents a router on the Internet and the epidemic can
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spread between nodes by the transmission of packets. A suscep-
tible node will be infected with some probability every time it re-
ceives a packet from an infected neighboring node.

Meloni model has received increasing attention in recent
years [27-32]. It has been found that the routing strategy can
greatly effects epidemic spreading [33,34]. Three routing algo-
rithms have been used in Meloni model. The first is the shortest-
path routing algorithm. The second is the local routing proto-
col [35], in which each node does not know the whole network’s
topological information and the packet is forwarded to a neighbor-
ing node i with a probability that is proportional to the power of
i’s degree. The third is the efficient routing protocol [36], in which
each node in a network is assigned a weight that is proportional
to the power of its degree and The efficient path between any two
nodes corresponds to the route that makes the sum of the nodes’
weight (along the path) minimal.

All the above routing strategies are based on the network struc-
ture and packets follow the fixed routes for a given network. In
this paper, we propose an adaptive routing strategy that integrates
topological distance with local epidemic information through a
tunable parameter h. In the adaptive routing strategy, a packet can
timely adjust its route according to the epidemic information of its
neighbors. Interestingly, we find that there exists an optimal value
of h, leading to the maximal epidemic threshold.

The paper is organized as follows. In Section 2, we formalize the
problem by introducing the adaptive routing strategy into traffic-
driven epidemic spreading. In Section 3 and Section 4, we present
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Fig. 1. The epidemic threshold 8. as a function of the routing parameter h for dif-
ferent values of the packet-generation rate A. The node-delivering capacity is infi-
nite.
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Fig. 2. The density of infected nodes p as a function of the degree k for differ-
ent values of the routing parameter h. The packet-generation rate A = 0.5 and the
spreading rate 8 = 0.13. The node-delivering capacity is infinite.

the results for infinite and finite node-delivering capacity respec-
tively. Finally, we give a conclusion in Section 5.

2. Model

Following the work of Meloni et al. [26], we incorporate the
traffic dynamics into the classical susceptible-infected-susceptible
model [37] of epidemic spreading as follows.

(i) Adaptive routing protocol. In a network of size N, at each
time step, AN new packets are generated with randomly chosen
sources and destinations (we call A as the packet-generation rate),
and each node can deliver at most C packets towards their des-
tinations. To deliver a packet to its destination, a node performs
a local search within its neighbors. If the packet’s destination is
found inside the searched area, it will be delivered directly to the
destination. Otherwise, the packet is forwarded to a neighboring
node i toward its destination j with the smallest value of effective
distance, denoted by
dl]ff:h-D,'j-i-(l —h)é;, (1)

e
where h is the routing parameter (0 < h < 1), Dy; is the topologi-
cal distance between nodes i and j, and §; = 1 (6; = 0) if node i is
infected (uninfected) in the previous time step.
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Fig. 3. The average traveling time of a packet (T) as a function of the spreading
rate B for different values of the routing parameter h. The packet-generation rate
X = 0.5. The node-delivering capacity is infinite.
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Fig. 4. The epidemic threshold B. as a function of the packet-generation rate A for
different values of the routing parameter h. The slopes of the fitted lines are about
—1. The node-delivering capacity is infinite.

It is worth noting that when h = 1, the adaptive routing recov-
ers to the traditional shortest path routing. Once a packet reaches
its destination, it is removed from the system. The queue length
of each node is assumed to be unlimited and the first-in-first-out
principle holds for the queue.

(ii) Epidemic dynamics. After a transient time, the total number
of delivered packets at each time will reach a steady value, then
an initial fraction of nodes pq is set to be infected (e.g., we set
po = 0.1 in numerical experiments). The infection spreads in the
network through packet exchanges. Each susceptible node has the
probability B of being infected every time it receives a packet from
an infected neighbor. The infected nodes recover at rate p (we set
i =1 in this paper).

In the following, we carry out simulations systematically by
employing traffic-driven epidemic spreading on the Barabasi-Albert
(BA) scale-free networks [38]. The size of the BA network is set
to be N =2000 and the average degree of the network is (k) = 4.
Each data point results from an average over 30 different realiza-
tions.
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