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a b s t r a c t 

The estimation of correlation dimension of continuous and discreet deterministic chaotic processes cor- 

rupted by an additive noise and outliers observations is investigated. In this paper we propose a new 

estimator of correlation dimension based on similarity between the evolution of Gaussian kernel corre- 

lation sum (Gkcs) and that of modified Boltzmann sigmoidal function (mBsf), this estimator is given by 

the maximum value of the first derivative of logarithmic transform of Gkcs against logarithmic transform 

of bandwidth, so the proposed estimator is independent of the choice of regression region like other 

regression estimators of correlation dimension. Simulation study indicates the robustness of proposed es- 

timator to the presence of different types of noise such us independent Gaussian noise, non independent 

Gaussian noise and uniform noise for high noise level, moreover, this estimator is also robust to presence 

of 60% of outliers observations. Application of this new estimator with determination of their confidence 

interval using the moving block bootstrap method to adjusted closed price of S&P500 index daily time 

series revels the stochastic behavior of such financial time series. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Financial fluctuations time series often tends to display chaos, 

statistical analysis of these property has formed a major area of 

research (the readers can see, for example, [1–4] ). A prior knowl- 

edge of the processes governing the dynamics of these fluctua- 

tions facilitates the correct identification of their nature. Recently, 

the chaotic deterministic process has been proposed as an alter- 

native for stochastic process for studying the behavior of some fi- 

nancial time series, using that such processes are characterized by 

some important properties such that they evolve according to spe- 

cific rules, and don’t explode because they are enclosed in a small 

space called attractor, and for modeling, they are efficient because 

they don’t contain in their structure a non observation noise like 

a stochastic processes. Therefore, the detection of a determinis- 

tic behavior would mean an opportunity for hedgers, speculators 

as well as arbitrageurs to play the markets better. The important 

method to detect the determinism behavior in time series is based 

on the computation of correlation dimension measure developed 

by Grassberger and Procaccia [5] which is, in the first hand, the 

most interesting statistically, it is computed from the real data and 

serves to measure the dimension of the reconstructed attractor, 

also, it measures the complexity within observations and quanti- 

fies the spatial correlation between values which compose it, in 

the other hand the importance of the correlation dimension arises 
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from the fact that the minimum number of variables to model a 

chaotic attractor is the smallest integer greater than it. 

The estimation of correlation dimension necessitates the com- 

putation of correlation integral [5] defined by C m 

(h ) = P (‖ X − Y ‖ ≤
h ) where X and Y are independent and identically distributed re- 

constructed vectors from observed time series and m is the em- 

bedding dimension, in [5] the authors used the Heaviside step 

function H given by H(x ) = 1 if x ≥ 0 and 0 otherwise to estimate 

the correlation integral, and then estimate the correlation dimen- 

sion D by the slope of linear part, for some small values of h , of 

log ( ̂  C m 

(h )) versus log ( h ) where ˆ C m 

(h ) is an estimator of correla- 

tion integral (see [5] for more details), Diks [6] uses the Gaussian 

kernel function given by K( X , Y ) = exp (−‖ X − Y ‖ 2 / 4 h 2 ) so as con- 

tributions from pairs with ‖ X − Y ‖ > h do not vanish like Heavi- 

side step function but are exponentially suppressed, using this ker- 

nel function the author demonstrates, based on the work of Ghez 

and Vaienti [7] , that the correlation integral in the free noise case 

is approximated when m → ∞ and h → 0 by exp ( −mKδt ) h 
D (we 

review it in details in Section 2 ) and to estimate D he uses a non- 

linear regression method on some range of h values. 

The principal problem on the estimation of D is the choice of 

the region when we can do the regression, i.e., the region of values 

of bandwidth h where the logarithmic transform of ˆ C m 

(h ) is linear 

and parallel for consecutive values of m , this problem is evoked by 

researches (for surveys see [8,9] ) especially when the deterministic 

time series is corrupted by noise which masks the scaling region 

at the small scale especially for high noise level, Diks in [6] pro- 
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pose a method to estimate the noise level, the correlation dimen- 

sion and the entropy dimension based on the Gkcs using a rang of 

values of h ≤ 0.25 and the authors demonstrates the efficiency of 

their method for deterministic time series with up to 20% of noise, 

in [10] the authors propose another method to estimate the noise 

level and the correlation dimension based on the suggested value 

of the largest bandwidth h c ( h c ≤ 3 σ ) where σ is the standard de- 

viation of the noise part, this method is tested for a high values of 

noise level and give satisfactory results. 

In this paper, we propose an estimator for correlation dimen- 

sion based on similarity between the curve of logarithmic trans- 

form of Gkcs and that of mBsf, this estimator is independent on 

the choice of bandwidth h . This article is organized as follows: 

the introduction in Section 1 , the Section 2 is devoted to review 

a theoretical concepts of Gaussian kernel correlation integral (Gkci) 

and their estimator Gkcs, also the simplified method to compute it. 

The proposed estimator is detailed in Section 3 , the evaluation of 

such estimator by a simulation study is presented in Section 4 and 

their application to financial time series with determination of 

their non symmetric confidence interval using moving bloc boot- 

strap method is presented in Section 5 , we conclude by Section 6 . 

2. Gaussian kernel correlation integral 

2.1. Theoretical review 

Suppose that we have a scalar time series { x i } , i = 1 , . . . , N x 

sampled at equally spaced times t i = i �t where �t is the sampling 

time interval and N x denotes the length of the time series. The 

underlying attractor can be reconstructed using delay co-ordinates 

method [11] , this reconstruction method consists in embedding the 

measured time series in an m -dimensional Euclidian space to cre- 

ate N m 

= N x − (m − 1) τ delay state vectors { X 

m 

i } , i = 1 , . . . , N m 

in 

terms of: 

X 

m 

i = [ x i , x i + τ , x i +2 τ , . . . , x i +(m −1) τ ] t (1) 

where τ is an integer referred to as a time lag (the delay time is 

given by δt = τ�t ) and m is usually referred to as the embedding 

dimension. 

The Gkci is used for estimating the correlation dimension, the 

entropy and the noise level for a contaminated time series, and 

can be summarized in two cases: the noise-free case and the case 

when the time series is corrupted by a Gaussian noise as follows 

(the reader can see [12] for more details): 

1. In the case of noise-free scales, the Gkci C m 

( h ) is defined as: 

C m 

(h ) = 

∫ ∫ 
p m 

( X ) p m 

( Y ) exp 

(
−‖ X − Y ‖ 

2 

4 h 

2 

)
d X d Y 

∼ exp ( −mKδt ) 

(
h √ 

m 

)D 

, where m → + ∞ and h → 0 , 

(2) 

where D is the correlation dimension which characterizes the 

geometry of attractor in terms of its fractional dimension, K is 

the correlation entropy characterizes their time complexity and 

it quantifies the rate at which the distance between two ini- 

tially nearby states increases under the dynamics, h is referred 

to as the bandwidth and p m 

is a probability distribution func- 

tion. The scaling behavior in Eq. (2) was first justified by Ghez 

et al. (the reader can see [13] Eq. (8) and Theorem 1, and also 

[7] Eq. (4.6)) and latter by Diks (see [6] Eq. (7) ) with inclusion 

of the factor in which the m dependence was originally intro- 

duced by Frank et al. [14] to improve the convergence of corre- 

lation entropy K . 

2. In the presence of Gaussian noise the distribution function be- 

comes p ∗m 

which can be expressed in terms of a convolution 

between the underlying noise-free distribution function p m 

and 

a normalized Gaussian distribution function p 
g 
m 

with standard 

deviation equal to σ , i.e., 

p ∗m 

( Y ) = 

∫ 
p m 

( X ) p g m 

(‖ Y − X ‖ ) d X 

= 

1 

(σ
√ 

2 π) m 

∫ 
p m 

( X ) exp 

(
−‖ Y − X ‖ 

2 

2 σ 2 

)
d X (3) 

accounts for noise effects in m -dimensional space [6,15] , then 

the Gkci C ∗m 

(h ) in this case and using Eqs. (2) and (3) have 

the corresponding scaling law (when 

√ 

h 2 + σ 2 → 0 and m → 

+ ∞ ): 

C ∗m 

(h ) = 

∫ ∫ 
p ∗m 

( X ) p ∗m 

( Y ) exp 

(
−‖ Y − X ‖ 

2 

4 h 

2 

)
d X d Y (4) 

= 

(
h 

2 

h 

2 + σ 2 

) m 
2 ∫ ∫ 

p m 

( X ) p m 

( Y ) exp 

(
− ‖ X − Y ‖ 

2 

4(h 

2 + σ 2 ) 

)
d X d Y 


 α

(
h 

2 

h 

2 + σ 2 

) m 
2 

exp (−mKδt ) 

(
h 

2 + σ 2 

m 

) D 
2 

, (5) 

where α is a normalized constant. 

The parameter σ is referred to as the noise level defined by 

σ = σn /σx = σn / 

√ 

σ 2 
d 

+ σ 2 
n where σ x , σ d and σ n are the stan- 

dard deviation of the input noisy signal { x i }, underlying clean 

component { d i } and the Gaussian noise part { n i }, where in to- 

tal signal x i = d i + n i , d i and n i are assumed to be statistically 

independent. 

2.2. Estimator and simplified algorithm 

In the case of discrete sampling and assuming that the vector 

points on the attractor are dynamically independently distributed 

according to p ∗m 

and using an average over delay vectors to replace 

the integral over the vector distributions in Eq. (4) , consequently, 

C ∗m 

(h ) can be computed as: 

ˆ C g m 

(h ) = 

1 

N m 

(N m 

− 1) 

N m ∑ 

i =1 

N m ∑ 

j � = i 
exp 

(
−‖ Y 

m 

i − Y 

m 

j ‖ 

2 

4 h 

2 

)
. (6) 

For estimating D, K and σ , ˆ C g m 

(h ) is computed for a series of dis- 

crete bandwidth values { h k } , k = 0 , 1 , 2 , . . . , N b and fitting to the 

scaling relation given by Eq. (5) using nonlinear least squares 

method (see [16] for theoretical review of this method and asso- 

ciated computation algorithms). 

The implementation of Gaussian kernel algorithm (GKA) [6] de- 

veloped to compute ˆ C g m 

(h ) needs the transformation of the input 

signal { x i } on the new signal ν i according to the formula: 

νi = 

x i − x 

σx 
, i = 1 , . . . , N x (7) 

where x and σ x denotes the mean and the standard deviation of 

the input signal { x i }, under this transformation the noise effect is 

described by the distribution function p 
g 
m 

and the standard devia- 

tion of the noise part is σ , accordingly, the delay state vectors are 

reconstructed by replacing { x i } with { ν i }. 

A direct computation of ˆ C g m 

(h ) is characterized by a compu- 

tational complexity of order O(N 

2 
m 

× N b ) , to eliminate this highly 

time complexity Yu et al. [10] has developed an efficient algorithm 

based on a simplification of expression given by Eq. (6) by showing 
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