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a b s t r a c t 

This paper studies the pinning stabilization problem of time-delay neural networks. A new pinning 

delayed-impulsive controller is proposed to stabilize the neural networks with delays. First, we consider 

the general nonlinear time-delay systems with delayed impulses, and establish several global exponential 

stability criteria by employing the method of Lyapunov functionals. Our results are then applied to obtain 

sufficient conditions under which the proposed pinning controller can exponentially stabilize the time- 

delay neural networks. It is shown that the global exponential stabilization of delayed neural networks 

can be effectively realized by controlling a small portion of neurons in the networks via delayed impulses, 

and, for fixed impulsive control gain, increasing the impulse delay or decreasing the number of neurons 

to be pinned at the impulsive moments will lead to high frequency of impulses added the corresponding 

neurons. Numerical examples are provided to illustrate the theoretical results, which demonstrate that 

our results are less conservative than the results reported in the existing literatures when the proposed 

pinning controller reduces to the delayed impulsive controller. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Neural networks (NNs) are a family of statistical learning mod- 

els inspired by the central nervous systems of animals (see, [1] ). 

NNs are generally presented as systems of densely interconnected 

simple elements which model the biological neurons, and send (or 

receive) messages to (or from) each other. In recent decades, the 

research on NNs has attracted numerous researchers attentions. 

This mainly due to their broad applications in many areas includ- 

ing image processing and pattern recognition (see, e.g., [2,3] ), data 

fusion [4] , odor classification [5] , and solving partial differential 

equations [6] . 

In real-world applications, it is inevitable for the existence of 

time delay in the processing and transmission of signals among 

neurons of NNs. Hence, it is practical to investigate NNs with time- 

delay (DNNs) (see, e.g., [7–12] ). Stability of DNNs, as a prereq- 

uisite for their applications, has been studied extensively in the 

past decades, and various control methods have been introduced to 

stabilize the DNNs, such as intermittent control [9] , sliding mode 

control [10] , impulsive control [11] , and sampled-data control [12] . 
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Among these control algorithms, the impulsive control method has 

been proved to be an effective approach to stabilize the DNNs. 

The control mechanism of this method is to control the neuron 

states of a NN with small impulses which are small samples of 

the state variables of the NN at a sequence of discrete moments. 

On the other hand, the time delay is unavoidable in sampling and 

transmission of the impulsive information in dynamical systems. 

Therefore, many control problems of dynamical systems have been 

investigated via delayed impulses in recent years, such as stabi- 

lization of stochastic functional systems [13,14] , synchronization of 

dynamical networks [15] , and stability analysis of nonlinear impul- 

sive and switched time-delay systems with delayed impulses [16] . 

The regular impulsive control method to stabilize a NN is to 

control each neuron of the network to tame the neuron dynam- 

ics to approach a steady state (i.e., equilibrium point). However, 

a NN is normally composed of a large number of neurons, and 

sometimes it is expensive and infeasible to control all of them. 

Motivated by this practical consideration, the idea of controlling a 

small portion of neurons, named pinning control, was introduced 

in [17,18] , and many pinning impulsive control algorithms have 

been reported for many control problems of dynamical networks 

(see, e.g., [19–24] ) It is worth noting that no time delay is consid- 

ered in these pinning impulsive controllers proposed in the above 

literatures. However, it is natural and essential to consider the de- 
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lay effects when processing the impulse information in the con- 

troller. 

Due to the cost effectiveness advantage of impulsive control 

method and pinning control strategy and the wide existence of 

time delay, it is practical to investigate the pinning impulsive con- 

trol approach that takes into account of impulse delays. However, 

to our best knowledge, no corresponding result has been reported 

for stabilization of DNNs. Therefore, in this paper, we propose 

a novel pinning delayed-impulsive controller for the DNNs. First, 

we use Lyapunov functional method to construct new criteria for 

global exponential stability of general nonlinear differential func- 

tional equations with delayed impulses. Our results are then used 

to establish sufficient conditions to guarantee the proposed con- 

troller can exponentially stabilize the DNNs. 

Compared with the existing work in the literature, the main 

contributions of our work are summarized as follows. 

• By the method of Lyapunov–Krasovskii functionals, several 

novel global exponential stability criteria are constructed for 

the general nonlinear time-delay systems subject to delayed 

impulses. It is shown that the delayed impulses can be ap- 

plied to stabilize the unstable time-delay systems. Therefore, 

it is guaranteed that the time-delay NNs can be stabilized by 

well-designed delayed impulsive controllers according to our 

results. Recently, various stability results of the time-delay sys- 

tems with delay impulsive effects have been reported in the 

literature by using the Lyapunov–Razumikhin technique (see, 

e.g., [13,14] ). However, it is worth noting that, as pointed 

out in [25] (Chapter 4.8, page 254), the Lyapunov–Razumikhin 

method can be considered as a particular case of the Lyapunov–

Krasovskii method, and the latter approach sometimes is more 

general than the former method. Hence, it is worthwhile to 

conduct stability analysis of time-delay systems with delayed 

impulses using the method of Lyapunov–Krasovskii functionals. 

• We propose a new pinning delayed-impulsive controller in the 

following form 

U i (t, x i ) = 

{∑ ∞ 

k =1 qx i (t − d) δ(t − t −
k 
) , i ∈ D 

l 
k 
, 

0 , i �∈ D 

l 
k 
, 

(1) 

where U i is the impulsive input to the i th neuron, l denotes 

the number of neurons to be controlled at each impulsive in- 

stant, and D 

l 
k 

is a index set which is associated with the pin- 

ning algorithm and will be introduced in Section 2 in detail. 

At impulsive time t = t k , it can be seen that only l neurons 

are controlled. The set D 

l 
k 

is related to the pinning algorithm 

which stems from [19] , and has been successfully applied to 

the control problem of various dynamical networks (see, e.g., 

[26–30] ). However, no time-delay has been considered in these 

results. Therefore, the pinning algorithm introduced in [19] can 

be treated as a particular case of our pinning delayed-impulsive 

control strategy (i.e., d = 0 ). It is worth noting that the ex- 

istence of time delay in controller (1) brings dramatic diffi- 

culties to estimate the relation between the states x i (t −
k 
) and 

x i (t k − d) , and then guarantee the delayed impulses contribute 

to the stabilization process of DNNs. Though, recent studies in 

[31] and [32] have considered the delay state x i (t k − d) in the 

pinning impulsive controller, the controller depends on both 

the state x i ( t k ) and x i (t k − d) , and there is no theoretical anal- 

ysis of how the delay state x i (t k − d) affects the pinning con- 

trol process. Actually, results in [32] have shown that the delay 

states can either contribute to the stability of the system or act 

as disturbances to the dynamical system. To our best knowl- 

edge, this is the first time that a pinning impulsive controller 

is proposed with delayed impulse effects which depend only 

on the delay state x i (t k − d) . The detailed discussion of the de- 

lay effects on the stabilization process of DNNs can be found in 

Section 4 . 

• If l is equal to n (the number of neurons in the NN), the pinning 

controller (1) reduces to the linear delayed impulsive controller 

in the form 

U i (t, x i ) = 

∞ ∑ 

k =1 

qx i (t − d) δ(t − t −
k 
) , for i = 1 , 2 , . . . , n, (2) 

which implies that all the neurons are controlled at every im- 

pulse moment. Although delayed impulsive controller (2) has 

been studied in [33] and [34] , our stabilization results are less 

conservative in the sense that we can obtain a larger upper 

bound for impulse delay d for given impulsive control gain q 

and fixed impulsive interval length (i.e., t k − t k −1 is constant for 

all k ∈ N ). 

The remainder of this paper is organized as follows. In 

Section 2 , we formulate the problem and introduce the pinning 

delayed-impulsive control algorithm. In Section 3 , global exponen- 

tial stability results of general nonlinear impulsive systems with 

time-delay are obtained, and a numerical example of linear impul- 

sive equation with delay is considered to illustrate these results. 

Then, in Section 4 , stability criteria obtained in Section 3 are ap- 

plied to construct sufficient conditions under which the proposed 

controller can exponentially stabilize the DNNs. The efficiency of 

the proposed results is demonstrated by numerical simulations in 

Section 5 . Finally, conclusions are stated in Section 6 . 

2. Preliminaries 

Let N denote the set of positive integers, R the set of real 

numbers, R 

+ the set of nonnegative real numbers, and R 

n the 

n -dimensional real space equipped with the Euclidean norm. For 

α, β ∈ R , the floor function � α� gives the largest integer less than 

or equal to α, and define mod(α, β) := α − � α
β
� β . For a, b ∈ R with 

a < b and S ⊆ R 

n , we define 

PC ([ a, b] , S) = 

{ 
ψ : [ a, b] → S 

∣∣∣ψ(t) = ψ(t + ) , for any t ∈ [ a, b) ; ψ(t −) 

exists in S, for any t ∈ (a, b] ; ψ(t −) = ψ(t) for all but 

at most a finite number of points t ∈ (a, b] 

} 
, 

PC ([ a, ∞ ) , S) = 

{ 
ψ : [ a, ∞ ) → S 

∣∣∣ for any c > a, ψ | [ a,c] ∈ PC ([ a, c] , S) 
} 
, 

where ψ(t + ) and ψ(t −) denote the right and left limit of func- 

tion ψ at t , respectively. For a given constant τ > 0, the lin- 

ear space PC ([ −τ, 0] , R 

n ) is equipped with the norm defined by 

|| ψ || τ = sup s ∈ [ −τ, 0] || ψ (s ) || , for ψ ∈ PC ([ −τ, 0] , R 

n ) . 

Consider the following DNN: 

˙ x i (t) = −c i x i (t) + 

n ∑ 

j=1 

a i j f j (x j (t)) + 

n ∑ 

j=1 

b i j f j (x j (t − r)) + J i , (3) 

for i = 1 , 2 , . . . , n, where x i ∈ R is the state of the i th neuron; n de- 

notes the number of neurons in DNN (3) ; f j ( x j ( t )) denotes the out- 

put of the j th neuron at time t ; constants a ij and b ij represent the 

strengths of connectivity between neurons i and j at time t and 

t − r, respectively; r corresponds to the transmission delay when 

processing information from the j th neuron; constant J i denotes 

the external bias or input from the outside of the network to the 

i th neuron; constant c i denotes the rate with which the i th neuron 

will reset its potential when disconnected with the other neurons 

of the network and external input. 

Throughout this paper, we make the following assumptions: 

( A 1 ) f i (0) = 0 and there exists a constant L i such that | f i (u ) −
f i (v ) | ≤ L i | u − v | for all u, v ∈ R and i = 1 , 2 , . . . , n ; 

( A 2 ) J i = 0 for i = 1 , 2 , . . . , n . 
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