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a b s t r a c t

We introduce the notion of groupoid grading, give somenontrivial examples and prove that
groupoid gradings on simple commutative or anti-commutative algebras are necessarily
group gradings. We also take advantage of the structure of groupoids to prove some
results about groupoid gradings and certain coarsenings of these which turn out to be
group gradings. We also study set gradings on arbitrary algebras, by characterizing their
homogeneous semisimplicity and their homogeneous simplicity in terms of a property
satisfied by the supports of the gradings, and also relate set gradingswith groupoid gradings
via coarsenings. Finally we study a class of set gradings onMn(C), the orthogonal gradings,
and show that all of them which are fine are necessarily groupoid gradings.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and preliminary definitions

In the literature, group gradings have been intensively studied in the last years, motivated in part by their application in
physics, geometry and topology where they appear as the natural framework for an algebraic model [1–11]. In particular, in
the field of mathematical physics, they play an important role in the theory of strings, color supergravity, Walsh functions or
electroweak interactions [12–17]. Certain advantages of endowingwith a grading to an algebra can also be found in [18–20].
However, gradings bymeans of weaker structures than a group have been considered in the literature just in a slightly way.
In the preset paper we wish to study algebras which are graded by means of not necessarily a group but just a groupoid.
Finally, we note that a complete review of the state of the art, respect to the theory of graded algebras, can be found in the
recent monograph [21].

For any category C, wewill denote the class of objects of C by Obj(C) and the class ofmorphisms of C byMor(C). A groupoid
G is a small category in which every arrow has an inverse. An alternative definition, which can be found for instance in [22],
is given in terms of a partially defined multiplication, on a non-empty set G, with some associativity condition and also a
suitable invertibility property. When we work with groupoids, the multiplication is understood to be arrow composition
(only possible when f ∈ hom(A, B) and g ∈ hom(B, C). Usually wewill identify the arrows of the category with the elements
of the groupoid. If as before, f ∈ hom(A, B) and g ∈ hom(B, C), the product fg in the groupoid is by definition the composition
g ◦ f , that is, fg := g ◦ f .

We note that, throughout the paper, the product of all of the considered algebras will be denoted by juxtaposition.
If we take a groupoid G, then a groupoid grading on an algebra A by G is a decomposition of A as a direct sum of linear
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subspaces

Λ : A = ⊕
f∈G

Af

such that, if Af Ag ̸= 0 then fg is defined, that is f ∈ hom(A, B), g ∈ hom(B, C) for suitable objects, and Af Ag ⊂ Afg . The
support of the grading is the set Σ := {f ∈ G : Af ̸= 0}. Of course, since any group is a groupoid, any group grading is a
groupoid grading.

If we have two groupoid gradings Λ1 : A = ⊕g∈GAg and Λ2 : A = ⊕h∈HBh on a K -algebra A, we will say that Λ1 is a
refinement of Λ2 when each homogeneous component Ag is contained in one homogeneous component Bh. We will also say
that Λ2 is a coarsening of Λ1. The grading Λ will be called fine if it does not admits any proper refinement. Finally, it is also
said that Λ1 and Λ2 are equivalent if there exist a bijection between their supports σ : Σ1 → Σ2, and an isomorphism of
algebras φ : A → A such that φ(Ag ) = Bσ (g) for any h ∈ Σ1.

In the present work we will also have the opportunity, in Sections 4 and 5, of dealing with the most general concept of
grading on an algebra, which is the one of set grading. If A is an arbitrary algebra and I an arbitrary (non-empty) set. It is said
that A has a set grading, by means of I , if

A = ⊕
i∈I
Ai (1)

where any Ai is a linear subspace satisfying that for any j ∈ I either AiAj = 0 or 0 ̸= AiAj ⊂ Ak for some (unique) k ∈ I . As
usual, the support of the grading is the set Σ := {i ∈ I : Ai ̸= 0}, and the concepts of refinement, coarsening, fine grading and
equivalence between gradings are defined for set gradings in a similar way than for groupoid gradings.

The paper is organized as follows. Section 2 is devoted to present several examples of groupoid gradings, on different
algebras, which are not group gradings. In Section 3 we study groupoid gradings on commutative and anti-commutative
algebras, (in particular on Jordan and Lie algebras). We recall that maybe the most famous conjecture in the framework of
graded algebras says that any set grading on a simple, complex finite-dimensional, Lie algebra is equivalent to an Abelian
group grading on the same Lie algebra, [21]. We give in Section 3 a partial proof of this conjecture, by showing that any
groupoid grading on a simple commutative or anti-commutative algebra is necessarily a group grading. Section 4 is devoted
to study groupoid, (and set), gradings on arbitrary algebras A. That is, A is just a linear space endowed with a bilinear map
called the product of A, but any identity (associative, alternative, Lie, Jordan, etc.) for the product is not supposed.We focus on
the inner structure of these gradings by proving they admit coarseningswhich are also groupoid gradings butwith all of their
homogeneous components ideals of A. Moreover, we also show that this result also holds whenwe part from an arbitrary set
graded algebra. If the groupoid is furthermore connected, (for instance when A is simple), then the above coarsenings can be
taken as (nontrivial) group gradings. Finally, a characterization of the homogeneous semisimplicity and the homogeneous
simplicity of a set grading on an arbitrary algebra, in terms of certain property of the support of the grading, is given. The last
section, Section 5, is devoted to study a special type of set gradings on (complex) matrix algebras, the orthogonal gradings.
These are set gradings which are compatible with the standard involution and inner product of thematrix algebra.We prove
that any orthogonal grading on a (complex) matrix algebra which is fine is necessarily a groupoid grading.

2. Groupoid gradings which are not group gradings

In order to give some examples of groupoid gradings which are not group gradings we must recall that a nice way to
present a category is by means of a (directed) graph. Recall that such a graph is a 4-tuple E = (E0, E1, s, r) where E0 is a set
(the so called set of vertices), E1 is also a set (the set of edges) and r, s : E1

→ E0 where for any f ∈ E1 we say that s(f ) is the
source of f and r(f ) the range of f .

An interesting notion on a graph E is that of a (nontrivial) path: a finite sequence λ := f1 · · · fn of edges fi ∈ E1 such that
r(fi) = s(fi+1). The vertices are usually considered as trivial paths. Also we say that the source of the path λ is the source of
f1 while the range of λ is the range of fn. The source and range of a trivial path (u ∈ E0) is the vertex u itself. Furthermore the
multiplication of paths λ, µ is also possible if r(λ) = s(µ), in which case it has sense the path λµ. If u ∈ E0 is a trivial path
and λ a path with s(λ) = u, the multiplication of these path it is defined by uλ = λ. Similarly if r(λ) = v then λv = λ. This
multiplication is associative when the compositions have sense.

When one has a graph E it is possible to define a (small) category C whose objects are the vertices of E, that is, Obj(C) = E0

and the arrows of C are the paths of the category. For given objects A, B ∈ Obj(C), we define homC(A, B) to be the set of all
paths whose source is A and whose range is B. In particular there is an arrow 1A ∈ hom(A, A), in fact, we define 1A as the
trivial path, the vertex A. The multiplication

hom(A, B) × hom(B, C) → hom(A, C)

that we need in order to have a category, is given by juxtaposition of paths.
So for instance, consider the graph:

•A •B

f
→→

f−1

←←
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