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a b s t r a c t

In this series of papers, we investigate the projective framework initiated by Kijowski
(1977) andOkołów (2009, 2014, 2013) [1,2],which describes the states of a quantum theory
as projective families of density matrices. A short reading guide to the series can be found
in Lanéry (2016).

A strategy to implement the dynamics in this formalismwas presented in our first paper
Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two
simple toy-models. The first one is a very basic linear model, meant as an illustration of
the general procedure, and we will only discuss it at the classical level. In the second one,
we reformulate the Schrödinger equation, treated as a classical field theory, within this
projective framework, and proceed to its (non-relativistic) second quantization. We are
then able to reproduce the physical content of the usual Fock quantization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In [3, section 3], we introduced a strategy to deal with dynamical constraints in a projective limit of symplecticmanifolds.
A regularization of these constraintswill in general be necessary, sincewe cannot expect them to be adapted to the projective
system, andwe adopted the perspective that a dynamical state can be identifiedwith the family of successive approximations
approaching an exact solution of the dynamics. On the one hand, this allows us to put the dynamical state space into a
projective form. On the other hand, it also provides a suitable ground for a notion of convergence, that will make it possible
to define meaningful physical observables on this state space.

However, applying this procedure demands that one sets up a regularization scheme fulfilling a number of restrictive
properties (summarized in [3, prop. 3.23]), which raises the question of its practicability. Hence, we now want to discuss
two simple examples, meant as ‘proofs of concept’ that such schemes can indeed be designed.

Note that the framework in [3, section 3] was purely classical. We have not yet undertaken to formulate a general
procedure regarding the resolution of dynamical constraints in projective systems of quantum state spaces [1,2,4–7].
Nevertheless, our second example will explore how analogous ideas can be implemented at the quantum level, and will
give us the opportunity to delineate an appropriate course and to underline possible difficulties.
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2. Linear constraints on a Kähler vector space

This first example is arguably mostly artificial and does not pretend to have great physical relevance. Our motivation
here is to illustrate the concepts introduced in [3, sections 2 and 3] in the simplest possible setup. We consider an infinite
dimensional Hilbert spaceH (which is nothing but a linear Kähler manifold) and form its rendering by a projective structure
of finite dimensional Hilbert spaces (to prevent any confusion: the Hilbert spaces in discussion here are the phase spaces
of classical systems, there will be nothing quantum in the present section). This rendering is built from an Hilbert basis of
H by considering all the vector subspaces of H spanned by a finite number of basis vectors and linking them by orthogonal
projections (a more satisfactory rendering for H, namely one that does not require the choice of a preferred basis, will be
presented in Section 3; however we do not want to use it here, since the constraints we will be looking at could be directly
formulated as an elementary reduction over a cofinal part of its label set, and it would therefore not be appropriate as an
example for the regularization procedure).

Proposition 2.1. Let H, ⟨ · , · ⟩ be a complex Hilbert space and define:
1. ∀v ∈ H, J v := i v;
2. ∀v,w ∈ H,Ω(v, w) := 2 Im (⟨v, w⟩).
Then, H, Ω, J is a Kähler manifold.

Proof. The real scalar product Re ⟨ · , · ⟩ equipsH (seen as a real vector space)with a structure of real Hilbert space, therefore,
any bounded real-valued real-linear form onH can bewritten as Re ⟨v, · ⟩ = 2 Im

⟨
−

i
2 v, ·

⟩
= Ω

(
−

i
2 v, ·

)
for some v ∈ H.

Hence,Ω is a strong symplectic structure.
Next, J is by construction a complex structure on H. We have ∀v,w ∈ H, Ω(i v, iw) = Ω(v, w), and v ↦→ Ω(v, i v) =

2 Re ⟨v, v⟩ is positive definite.
The integrability conditions forΩ and J are trivially satisfied since we actually have a Kähler vector space. □

Proposition 2.2. Let H be a separable, infinite dimensional Hilbert space (equippedwith the strong symplectic structureΩ defined
in Proposition 2.1) and let (ei)i∈N be an Hilbert basis of H. We define:

1. L := {I ⊂ N | 0 < #I <∞} equipped with the preorder defined by⊂;
2. ∀I ∈ L, HI := Vect {ei | i ∈ I} equipped with the induced symplectic structure ΩI (which is also the natural symplectic

structure on HI as a finite dimensional Hilbert space);
3. ∀I ⊂ I ′ ∈ L, πI ′→I := ΠI |HI′→HI whereΠI is the orthogonal projection on HI ;
4. HN := H and ∀I ∈ L, πN→I := ΠI |H→HI .
Then, this defines a rendering [3, def. 2.6] of the symplectic manifold H by the projective system of phase spaces (L, H, π)↓.

We define σ↓ : H→ S↓(L,H,π ) as in [3, def. 2.6].
Additionally, defining the dense vector subspace of H,D := Vect {ei | i ∈ N} (without completion, i.e. the space of finite linear

combinations of the ei), we have a bijective antilinear map ζ : D∗ → S↓(L,H,π ) such that ζ−1 ◦ σ↓ : H → D∗ is the canonical
identification of H with D′ ⊂ D∗ (where D∗ is the algebraical dual of D and D′ the topological one).

Proof. L is a directed set, since ∀I, I ′ ∈ L, I ∪ I ′ ∈ L and I, I ′ ⊂ I ∪ I ′.
Let I, I ′ ∈ L ⊔ {N} with I ⊂ I ′. πI ′→I is surjective by construction. Next, since HI is closed, we have, for any bounded

real-valued real-linear form υ on HI , a vector υ ∈ HI such that:

∀v ∈ HI , υ(v) = ΩI (υ, v) = Re
⟨
2i υ, v

⟩
I .

Hence, sinceΠI is the C-orthogonal projection on the complex vector subspaceHI , it is also theR-orthogonal projection
on the real vector subspace HI , and we have:

∀v ∈ HI ′ , υ ◦ πI ′→I (v) = Re
⟨
2i υ, ΠI v

⟩
I = Re

⟨
2i υ, v

⟩
I ′ = ΩI ′ (υ, v) ,

and therefore πI ′→I
(
υ ◦ πI ′→I

)
= πI ′→I

(
υ
)
= υ .

Clearly for I ∈ L, we have πI→I = idHI and for I, I ′, I ′′ ∈ L ⊔ {N}with I ⊂ I ′ ⊂ I ′′, πI ′→I ◦ πI ′′→I ′ = πI ′′→I .
Lastly, we define:

ζ : D∗ → S↓(L,H,π )
υ →

(
υ|HI

)
I∈L

.

where for all I ∈ L, ( · ) : H∗I → HI is the canonical identification provided by the complex Hilbert space structure onHI (HI
is finite dimensional, hence H∗I = H′I ).

The map ζ is well-defined, since ∀I ⊂ I ′ ∈ L, ∀v ∈ HI ,

⟨
πI ′→I

(
υ|HI′

)
, v

⟩
I
=

⟨
υ|HI′

, v

⟩
I ′
= υ(v) =

⟨
υ|HI , v

⟩
I , hence

πI ′→I

(
υ|HI′

)
= υ|HI .
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