Accepted Manuscript

Degenerate, strong and stable Yang-Mills-Higgs pairs

Zhi Hu, Pengfei Huang

PII: \quad S0393-0440(17)30147-X

DOI: http://dx.doi.org/10.1016/j.geomphys.2017.05.019
Reference: GEOPHY 3010
To appear in: Journal of Geometry and Physics
Received date: 7 December 2016
Revised date: 5 May 2017
Accepted date: 29 May 2017

Please cite this article as: Z. Hu, P. Huang, Degenerate, strong and stable Yang-Mills-Higgs pairs, Journal of Geometry and Physics (2017), http://dx.doi.org/10.1016/j.geomphys.2017.05.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

DEGENERATE, STRONG AND STABLE YANG-MILLS-HIGGS PAIRS

ZHI HU \& PENGFEI HUANG

Abstract

In this paper, we introduce some notions on the Hitchin pair consisting of a Chern connection and a Higgs field closely related to the first and second variation of Yang-Mills-Higgs functional, such as degenerate Hitchin pair, (strong) Yang-Mills-Higgs pair, stable Yang-Mills-Higgs pair. We investigate some properties of such pairs under the various contexts.

Contents

1. Introduction
2. Hitchin Pairs Associated with the Yang-Mills-Higgs System 4
2.1. Basic Properties via Hitchin-Simpson Curvature 4
2.2. Strong Yang-Mills-Higgs Pairs and Stability of Higgs Bundles 8
2.3. \mathbb{C}^{*}-Fixed Points 10
2.4. Higgs Cohomology $\quad 12$
3. Stable Yang-Mills-Higgs Pairs 13
3.1. Deformation of the Hitchin Pairs 13
3.2. Stable Yang-Mills-Higgs Pairs 15

References

1. INTRODUCTION

Since 1950s, Yang-Mills theory first explored by several physicists had a profound impact on the developments of differential and algebraic geometry. A remarkable fruit owed to Donaldson is constructing invariants of 4-manifolds via studying the homology of the moduli space of anti-self-dual $S U(2)$-connections, where technical challenges come from Uhlenbeck compactification of moduli space and handling singularities through the metric perturbations[1, 2]. In 1987 Hitchin considered the 2-dimensional reduction of the self-dual Yang-Mills equations on \mathbb{R}^{4} as a manner of symmetry breaking, then he introduced a (1,0)-form ϕ (valued in complex adjoint vector bundle), called the Higgs field for the Riemann surface, which is described by the so-called Hitchin self-duality equations[3]:

$$
\begin{aligned}
F_{A}+[\phi, \bar{\phi}] & =0, \\
d_{A}^{\prime \prime} \phi & =0
\end{aligned}
$$

Influenced by Hitchin's work, Simpson generalized the conception of Higgs field to the higher dimensional case[4], and he made great innovations in various areas of algebraic geometry[5, 6, 7]. Since then Higgs bundles have emerged in the last two decades as a central object of study in geometry, with several links to physics and number theory.

Let us first recall some basic definitions.
Definition 1.1. ($[8,9,10]$) Let X be an n-dimensional compact Kähler manifold with Kähler form ω, and let Ω_{X}^{1} be the the sheaf of holomorphic 1 -forms on X. A Higgs sheaf over X is a coherent sheaf E of dimension n over X, together with a morphism $\phi: E \rightarrow E \otimes \Omega_{X}^{1}$ of \mathcal{O}_{X}-modules (that is usually called the Higgs field), such that the morphism $\phi \wedge \phi: E \rightarrow E \otimes \Omega_{X}^{2}$ vanishes. A Higgs bundle is a locally-free Higgs sheaf. A subsheaf F of E is called the Higgs subsheaf if $\phi(F) \subset F \otimes \Omega_{X}^{1}$, i.e. the pair $F=\left(F,\left.\phi\right|_{F}\right)$ becomes itself a Higgs sheaf. Let $\left(E_{1}, \phi_{1}\right)$ and $\left(E_{2}, \phi_{2}\right)$ be two Higgs sheaves over X. A morphism between them is a map $E_{1} \rightarrow E_{2}$ such that the following diagram commutes

$$
\begin{array}{cc}
E_{1} \xrightarrow{\phi_{1}} & E_{1} \otimes \Omega_{X}^{1} \\
f \downarrow & f \otimes 1 \downarrow \\
E_{2} \xrightarrow{\phi_{2}} & E_{2} \otimes \Omega_{X}^{1} .
\end{array}
$$

https://daneshyari.com/en/article/5499924

Download Persian Version:

https://daneshyari.com/article/5499924

Daneshyari.com

