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a b s t r a c t

We first propose a conformal geometry for Connes–Landi noncommutative manifolds and
study the associated scalar curvature. The new scalar curvature contains its Riemannian
counterpart as the commutative limit. Similar to the results on noncommutative two tori,
the quantum part of the curvature consists of actions of the modular derivation through
two local curvature functions. Explicit expressions for those functions are obtained for all
even dimensions (greater than two). In dimension four, the one variable function shows
striking similarity to the analytic functions of the characteristic classes appeared in the
Atiyah–Singer local index formula, namely, it is roughly a product of the j-function (which
defines the Â-class of a manifold) and an exponential function (which defines the Chern
character of a bundle). By performing two different computations for the variation of the
Einstein–Hilbert action, we obtain deep internal relations between two local curvature
functions. Straightforward verification for those relations gives a strong conceptual con-
firmation for the whole computational machinery we have developed so far, especially the
Mathematica code hidden behind the paper.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The general question behind this paper is to explore the notion of intrinsic curvature, which lies in the core of the
geometry, in the operator theoretical framework (noncommutative differential geometry). The question remained intangible
until the recent development of modular geometry on noncommutative two tori [1], other major references on this subject
include [2–6], see also [7,8]. The computation has been extended to noncommutative four tori smoothly [9,10]. The essential
computational tool is Connes’ pseudo-differential calculus for C∗-dynamical system, first constructed in [11] and extended
in [6] to Heisenberg modules. Some different approaches can be found in [12,13].

In the modular geometry on noncommutative tori, the Riemannian aspect is somehow hidden in the sense that the
original metric is flat. To obtain a stronger demonstration that our approach does include Riemannian geometry as a
special case, we would like to test the ideas on a larger class of deformed Riemannian manifolds known as Connes–Landi
noncommutative manifolds, first introduced in [14]. The computation was initiated in the author’s previous work [15].
The first main result in [15] is a pseudo differential calculus which is suitable for studying the spectral geometry. Such
a calculus not only records the Riemannian curvature information but also dramatically simplify the computation. By
testing the calculus on the scalar Laplacian operator∆ϕ in [1], we recovered the local curvature functions. This paper starts
with an unfinished problem in [15], namely, computing the full scalar curvature for all even dimensional Connes–Landi
noncommutative manifolds.
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Table 1
Conformal change of metric and the associated scalar curvature in the noncommutative setting.

Riemannian geometry Connes–Landi spectral triples

e−2h with h ∈ C∞(M) real-valued e−2h with h = h∗
∈ C∞(Mθ ) self-adjoint

Original metric g Spinor Dirac /D
g ′

= e−2hg Dh = eh/2/Deh/2

Scalar curvature for g ′: Sg ′ RDh ∈ C∞(Mθ ): local expression of V2(·,D2
h) defined in (1.2)

Let us first recall some basic notions in conformal geometry in the operator theoretical setting. The generalization to
the noncommutative setting is straightforward, which leads to the conformal geometry of Connes–Landi noncommutative
manifolds defined in Table 1.

For a closed Riemannianmanifold (M, g), which is also spinwith the spinor bundle /Sg and the spinor Dirac operator /D, the
spin geometry can be recovered by theDiracmodel,which consists of the spectral data (C∞(M), L2(/Sg ), /D). Thismotivates the
basic paradigm of noncommutative geometry: the notion of spectral triples (A,H,D), in which A is the coordinate algebra
and the operatorD (playing the role of the Dirac operator) encodes themetric (cf. [16,17]). Thanks to the conformal covariant
property of the spinor Dirac operator /D, the conformal change of metric g ′

= e−2hg , where h ∈ C∞(M) real-valued, in the
spectral setting can be achieved by replacing /D by Dh = eh/2/Deh/2. The perturbed Dirac model (C∞(M), L2(/Sg ),Dh) via a
conformal factor eh is a natural example of twisted spectral triples of type III in [18].

Once themetric is fixed (as /D or Dh), local invariants, such as the scalar curvature function, are encoded in the heat kernel
asymptotic:

Tr(fe−t /D2
)∽t↘0

∞∑
j=0

Vj(f , /D
2)t (j−m)/2, ∀f ∈ C∞(M), m = dimM. (1.1)

Each coefficient Vj(f , /D
2) is a spectral functional (in f ). The associated local expressions Vj(x, /D

2) ∈ Γ (End(/S)) (also called
functional densities) are defined by the property:

Vj(f , /D
2) = ϕ0(fVj(x, /D

2)), ∀f ∈ C∞(M),

here ϕ0(ψ) =
∫
M Trx(ψ)dvolg , ∀ψ ∈ Γ (End(/S)), where Trx is the fiberwise trace. Up to an overall constant (4π )−m/2,

V0(x, /D
2) = I which is related to the volume form and the next term recovers the scalar curvature function S/D:

V2(x, /D
2) = −

1
12

S/D. (1.2)

See [19], Section 11.1 for a detailed discussion.
We are ready to state the main results of this paper. Assume that the dimension m of the manifolds is always even and

greater than two, the requirement comes only from Lemma 6.1. Similar to the results on noncommutative two tori, the scalar
curvature in the conformal geometry of Connes–Landi noncommutative manifolds is of the form:

RDh = e(−m+2)h
(
K(m)

Dh
( /▽)(∇2h) + H(m)

Dh
( /▽(1), /▽(2))(∇h∇h)

)
g−1

+ c∆e(−m+2)hS∆, m = dimM. (1.3)

Up to a volume factor e−mh, (1.3) contains its Riemannian version (3.17) as the commutative limit. The noncommutative
feature is reflected by the action of the modular derivation /▽ = −2adh through two local curvature functions K(m)

Dh
(u) and

H(m)
Dh

(u, v), which are still begging for more conceptual understanding.
The dependence of the local curvature functions KDh (u) and HDh (u, v) on the dimension m is due to integration over the

unit sphere Sm−1 combined with some integration by parts arguments. It turns out that they are all contained in the germs
(at u = 0) of function F and G defined in (3.6) and (3.7) respectively. In dimension four, the functions can be derived from F
and G at u = 0; in dimension six, one needs to compute the first jet of F and G at u = 0; in dimension eight, one needs the
second jet, etc.

For the Gaussian curvature of noncommutative two tori ([1], Theorem 4.8), there are two celebrated features for the local
curvature functions: (1) The one variable function is the generating function of Bernoulli numbers. (2) There is an intriguing
functional relation (Eq. 4.38 in [1] between them. The two facts both have generalizations in higher dimensions.

In dimension four, the one-variable local curvature function equals:

KDh (u) = −
1
2
eu/2

sinh (u/4)
(u/4)

. (1.4)

One can see the striking similarity to the analytic functions for the characteristic classes appeared in the Atiyah–Singer local
index formula. The j-function sinh(x/2)/(x/2) defines the Â-class of a manifold while the exponential function gives rise to
the Chern character of a vector bundle. It is not a coincident. Indeed, the j-function, or f1(u) = (eu−1)/u, the reciprocal of the
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