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Algebras of symmetries and the corresponding algebras of differential invariants for
3D-flows of viscid newtonian fluids are given. Their dependence on thermodynamical
states of media is studied.
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1. Introduction

In this paper we study differential invariants of 3D-flows of compressible viscid newtonian fluids with respect to their
symmetry group.

The system of differential equations governing such flows consists of the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ
Du
Dt
= − grad p+ η∆u+

(
ζ +

η

3

)
grad(divu)+ gρ,

Dρ

Dt
+ ρ divu = 0,

Tρ
Ds
Dt
= k∆T +

∑
i,j

σij
∂ui

∂xj
,

(1)

where the vector u = (u1, u2, u3) is the flow velocity, p, ρ, s, T are the pressure, density, entropy, temperature of the fluid
respectively, and g = (0, 0, g) is the gravity force.

The derivative
Df
Dt
=

∂ f
∂t
+ u · grad f

is a material or substantial derivative and ∆ = div grad is the Laplace operator.
Here σij is a viscous stress tensor (see, for example, [1]) defined in the following way:

σij = η

(
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∂xj
+

∂uj

∂xi
−

2
3
δij

∂uk
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)
+ ζ δij

∂uk

∂xk
.
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The thermal conductivity k and the viscosities ζ and η are assumed to be constants.
The first equation of system (1) is the 3-dimensional Navier–Stokes equation, the second is the expression of the

conservation mass law and the third is the general equation of heat transfer. See also [1] for details.
Further we use coordinates (x, y, z) instead of (x1, x2, x3) and (u, v, w) for flow velocity (u1, u2, u3).
Note that system (1) is incomplete. In order to complete it we add two additional equations using the thermodynamics of

the medium. In the paper [2] we give the classification of thermodynamic states and the corresponding Lie algebras for the
cases when the thermodynamic state admits a one- or two-dimensional symmetry algebra. This classification is also valid
in our case.

The paper is organized as follows. In Section 2 we recall main thermodynamic notions in a geometrical form more
convenient for our purposes. Thus, the thermodynamic states will be given by Lagrangian surfaces or by two differential
equations with an additional compatibility condition.

In Section 3 we discuss symmetry Lie algebras of the Navier–Stokes system and especially their dependence on the
thermodynamic state. In general, the symmetry algebra consists of pure geometrical and thermodynamic parts. The
geometrical part represents the symmetry (4) with respect to a group of motions, Galilean transformations and time shifts.
The thermodynamic part strongly depends on the symmetries of the thermodynamic state.

The smallest symmetry algebra (of dimension 10) is realized for general thermodynamic states. This algebra depends on
the geometry of the medium, and we call the corresponding differential invariants kinematic.

In Section 4 we give a complete description of the algebra of kinematic invariants. Depending on a symmetry of the
thermodynamic states we get a bigger symmetry algebra and therefore a smaller algebra of invariants (we call themNavier–
Stokes invariants). We give also a description of these algebras for the case of the thermodynamic states with one- or two-
dimensional symmetry algebras. It follows that the Navier–Stokes invariants are obtained by adding some constraints on
the kinematic ones. Also observe that the Navier–Stokes invariants give us the complete information about the flow as well
as the medium.

Many of the computations in this paper were done in Maple with the remarkable Differential Geometry package [3] by
I. Anderson and his team. Maple files with the most important computations in this paper can be found on the web-site
http://d-omega.org.

2. Thermodynamics

As we have seen, the PDE system (1) is not complete. It has 5 equations for 7 unknown functions. To complete it we need
two additional relations on the thermodynamic quantities used in the system.

Namely, in our case we have the following thermodynamic quantities: the specific volume ρ−1, the specific entropy s and
the specific internal energy ϵ.

Geometrically, the main thermodynamical relations can be formulated as follows.
Let us consider a 5-dimensional contactmanifoldΦ = R5 equippedwith coordinates (p, ρ, s, T , ϵ) and the contact 1-form

θ = dϵ − Tds−
p
ρ2 dρ.

Then the thermodynamical states are a 2-dimensional Legendrian manifold L, i.e. such surface L ⊂ Φ , that the first law
of thermodynamics θ

⏐⏐
L = 0 holds.

We will consider this case, when the functions (ρ, s) are coordinates on the manifold L. Then this surface can be defined
by the structure equations:

ϵ = ϵ(ρ, s), T =
∂ϵ

∂s
, p = ρ2 ∂ϵ

∂ρ
.

Remark that the Navier–Stokes system (1) does not depend on the specific energy ϵ.
In order to eliminate the internal energy ϵ from the description of the thermodynamic states we consider the projection

φ : R5
→ R4, φ : (p, ρ, s, T , ϵ) ↦−→ (p, ρ, s, T ). The restriction of the map φ on the state surface L is a diffeomorphism on

the image L̄ = φ(L) and the surface L̄ ⊂ R4 is a Lagrangian manifold in the 4-dimensional symplectic space R4 equipped
with the structure form

Ω = ds ∧ dT + ρ−2dρ ∧ dp.

Moreover, the specific energy ϵ of the state can be reconstructed (up to a constant) from the Lagrangian surface L̄.
Therefore, equivalently, the thermodynamic states could be considered as the Lagrangian submanifolds in the symplectic

space (R4, Ω).
Thus, if we define the two-dimensional surface L̄ by the equations{

F (p, ρ, s, T ) = 0,
G(p, ρ, s, T ) = 0, (2)

then the condition for the surface L̄ to be Lagrangian has the following form:

[F ,G] = 0 on L̄, (3)
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