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EICHLER-SHIMURA ISOMORPHISM FOR COMPLEX HYPERBOLIC
LATTICES

INKANG KIM AND GENKAI ZHANG

ABSTRACT. We consider the cohomology group H1(Γ, ρ) of a discrete subgroup Γ ⊂
G = SU(n, 1) and the symmetric tensor representation ρ on Sm(Cn+1). We give an ele-
mentary proof of the Eichler-Shimura isomorphism that harmonic forms H1(Γ\G/K, ρ)
are (0, 1)-forms for the automorphic holomorphic bundle induced by the representation
Sm(Cn) of K .

1. INTRODUCTION

Let B be the unit ball in Cn considered as the Hermitian symmetric space B = G/K

of G = SU(n, 1), n > 1. Let Γ be a cocompact torsion free discrete subgroup of G and
ρ a finite dimensional representation of G, and X = Γ\B. The representation ρ of G
defines also one for Γ ⊂ G. The first cohomology H1(Γ, ρ) is of substancial interests and
appears naturally in the study of infinitesimal deformation of Γ in a bigger group G′ ⊃ G;
see [8, 5, 2]. It is a classical result of Raghunathan [14] that the cohomology group
H1(Γ, ρ) vanishes except when ρ = ρm is the symmetric tensor Sm(Cn+1) (or ρ′m on
Sm(Cn+1)′). In a recent work [8] it is proved that realizing H1(X, ρ) as harmonic forms,
it consists of (0, 1)-forms for the symmetric tensor of the holomorphic tangent bundle of
X = Γ\B. The proof in [8] uses a Hodge vanishing theorem and the Koszul complex. In
the present paper we shall give a rather elementary proof of the result. We will prove that
any harmonic form with values in Sm(Cn+1) is (0, 1)-form taking values in Sm(Cn). Let
TX and T ′X be the holomorphic tangent and cotangent bundles respectively. Let L−1 be
the line bundle on X defined so that L−(n+1) is the canonical line bundle K = KX . More
precisely we shall prove the following, the notations being explained in §2,

Theorem 1.1. Let Γ be a torsion free cocompact lattice of G acting properly discontinu-
ously on B.

(1) Let α ∈ A1(Γ, B, ρm) be a harmonic form. Then α is a (0, 1)-form on Γ\B with
values in the holomorphic vector bundle SmTX ⊗ L−m.

12000 Mathematics Subject Classification. 22E46, 20G05
2Key words and phrases. Complex hyperbolic lattice, Eichler-Shimura isomorphism.
3Research partially supported by STINT-NRF grant (2011-0031291). Research by G. Zhang is supported

partially by the Swedish Science Council (VR). I. Kim gratefully acknowledges the partial support of grant
(NRF-2017R1A2A2A05001002) and a warm support of Chalmers University of Technology during his
stay.

1

Manuscript



Download	English	Version:

https://daneshyari.com/en/article/5499972

Download	Persian	Version:

https://daneshyari.com/article/5499972

Daneshyari.com

https://daneshyari.com/en/article/5499972
https://daneshyari.com/article/5499972
https://daneshyari.com/

