FI SEVIER

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Corrigendum and addendum to "Moduli spaces of framed sheaves and quiver varieties"

Claudio Bartocci^{a,*}, Valeriano Lanza^b, Claudio L.S. Rava^a

- ^a Dipartimento di Matematica, Università di Genova, Italy
- ^b Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Brazil

ARTICLE INFO

Article history:
Received 28 June 2017
Received in revised form 7 July 2017
Accepted 8 July 2017
Available online 12 August 2017

Keywords: Framed sheaves Hirzebruch surfaces Monads

ABSTRACT

This paper is an erratum to our paper *Moduli spaces of framed sheaves and quiver varieties* (J. Geom. Phys., 2016). As a byproduct, we prove a result (Prop. 2.5) providing a description of the fibre T_V^{\vee} Gr $(a, r)^{\oplus n-1}$, for each $V \in \text{Gr}(a, r)$, as the space of isomorphism classes of certain extensions of sheaves on Hirzebruch surfaces.

1. Introduction

The claim (ii) in Proposition 6.7 of [1] is incorrect, as next Example 2.3 will make clear. As a consequence, the claim (iii) in Proposition 6.7 and Corollary 6.9 are false as well, whilst Proposition 6.8 must be replaced by a slightly weaker statement (see Proposition 2.4). All results stated in Sections 2 to 5, in Subsections 6.1 to 6.3, and in Section 7 hold true, and their proofs remain unchanged; also the final part of Section 6.4, after the proof of Corollary 6.9, remains valid as it stands. In the Introduction, the sentence "the fibres of the direct sum of (copies of) the cotangent bundle classify the sheaves away from the line at infinity" [1, p. 2] has to be replaced by the sentence "each fibre of the direct sum of (copies of) the cotangent bundle can be identified with the vector space $\operatorname{Ext}^1_{\mathcal{O}_{\Sigma_n}}(\mathcal{O}_{\Sigma_n}^{\oplus r^{-a}}, \mathcal{O}_{\Sigma_n}(E)^{\oplus d})$ ".

If not otherwise stated, the notation is the same as in [1]. For the reader's convenience, we briefly recall which is the

If not otherwise stated, the notation is the same as in [1]. For the reader's convenience, we briefly recall which is the setting we are working in. We denote by Σ_n the n-th Hirzebruch surface, which can be defined as the projective closure of the total space of the line bundle $\mathcal{O}_{\mathbb{P}^1}(-n)$; we assume the condition n>0. The fibre of the natural ruling $\Sigma_n\to\mathbb{P}^1$ determines a class $F\in \mathrm{Pic}(\Sigma_n)$ and we denote by F and F the classes of sections squaring, respectively, to F and F is well-known, $\mathrm{Pic}(\Sigma_n)$ is freely generated on \mathbb{Z} by F and F is we put $\mathcal{O}_{\Sigma_n}(p,q)=\mathcal{O}_{\Sigma_n}(pH+qF)$. We fix a "line at infinity", $\ell_\infty\simeq\mathbb{P}^1$, belonging to the class F and not intersecting F. A framed sheaf on F is a pair F is a rank F torsion-free sheaf trivial along F and F is an isomorphism. Notice that the condition of being trivial at infinity implies $C_1(\mathcal{E})\propto E$.

The moduli space $\mathcal{M}^n(r, a, c)$ parameterizing isomorphism classes of framed sheaves (\mathcal{E}, θ) on Σ_n with Chern character $\mathrm{ch}(\mathcal{E}) = \gamma = (r, aE, -c - \frac{1}{2}na^2)$ has been extensively studied in [1–3]. It is a fine moduli space, which is nonempty if and only if

$$c \ge \frac{na(1-a)}{2}.\tag{1.1}$$

E-mail address: bartocci@dima.unige.it (C. Bartocci).

DOI of original article: http://dx.doi.org/10.1016/j.geomphys.2016.10.011.

^{*} Corresponding author.

When the lower bound of the inequality (1.1) is attained, the moduli space $\mathcal{M}^n(r, a, \frac{na(1-a)}{2})$ has a particularly simple and explicit form.

Theorem 1.1 (= [1, Theorem 6.2]). There are isomorphisms

$$\mathcal{M}^n\left(r,a,\frac{na(1-a)}{2}\right)\simeq \begin{cases} \operatorname{Gr}(a,r) & \text{if } n=1;\\ T^{\vee}\operatorname{Gr}(a,r)^{\oplus n-1} & \text{if } n\geq 2, \end{cases}$$

where Gr(a, r) is the Grassmannian of a-planes in \mathbb{C}^r .

The main result we shall prove in the next section – sc. Proposition 2.5 – provides a description of the fibre T_V^{\vee} $Gr(a, r)^{\oplus n-1}$, for each $V \in Gr(a, r)$, as the space of isomorphism classes of extensions of the form

$$0 \longrightarrow V \otimes \mathcal{O}_{\Sigma_n}(E) \stackrel{i}{\longrightarrow} \mathcal{E} \stackrel{p}{\longrightarrow} \left(\mathbb{C}^r/V\right) \otimes \mathcal{O}_{\Sigma_n} \longrightarrow 0$$

2. A description of the fibre T_{v}^{\vee} $Gr(a, r)^{\oplus n-1}$

Let us recall that, if a torsion-free sheaf \mathcal{E} on Σ_n is trivial at infinity and satisfies the "minimality" condition (1.1), then it is locally free. These sheaves can be explicitly realized as extensions.

Proposition 2.1. (= [1, Proposition 6.7(i)]) A torsion-free sheaf ε is trivial at infinity and satisfies condition (1.1) if and only if it fits into an extension of the form

$$0 \longrightarrow \mathcal{O}_{\Sigma_n}(E)^{\oplus a} \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{O}_{\Sigma_n}^{\oplus r-a} \longrightarrow 0$$
 (2.1)

for some integers r > 0 and $0 \le a < r$.

The following result replaces the erroneous claim [1, Proposition 6.7(ii)].

Proposition 2.2. Two vector bundles \mathcal{E} and \mathcal{E}' which are trivial at infinity and satisfy condition (1.1) are isomorphic if and only if they fit into extensions of the form (2.1) which are isomorphic as complexes.

Proof. The "if" part is trivial. To prove necessity, we have to distinguish the case n = 1 from the case $n \ge 2$. When n = 1, [2, Lemma 3.1] implies that

$$\operatorname{Ext}^1_{\mathcal{O}_{\Sigma_1}}\left(\mathcal{O}_{\Sigma_1}^{\oplus r-a},\mathcal{O}_{\Sigma_1}(E)^{\oplus a}\right)=0.$$

It follows that all extensions of the form (2.1) split, and this proves the claim in this case. Let us assume $n \ge 2$ and let \mathcal{E} and \mathcal{E}' be two isomorphic vector bundles which are trivial at infinity and satisfy condition (1.1). As shown in [1, § 6.1], \mathcal{E} is the cohomology of a monad of the form

$$0 \longrightarrow \mathcal{O}_{\Sigma_n}(1,-1)^{\oplus na} \oplus \mathcal{O}_{\Sigma_n}^{\oplus r-a} \stackrel{\beta}{\longrightarrow} \mathcal{O}_{\Sigma_n}(1,0)^{\oplus (n-1)a} \longrightarrow 0, \tag{2.2}$$

where β is surjective (therefore, $\mathcal{E} \simeq \ker \beta$); analogously for \mathcal{E}' . By [2, Lemma 4.7], an isomorphism $\Lambda: \mathcal{E} \longrightarrow \mathcal{E}'$ lifts uniquely to an isomorphism of monads. We proved in [1, § 6.3] that such an isomorphism is uniquely determined by an invertible matrix $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$, where $A \in GL(a,\mathbb{C})$ and $C \in GL(r-a,\mathbb{C})$. By using the diagram [1, eq. (6.18)] it can be shown that there is an induced diagram

$$0 \longrightarrow \mathcal{O}_{\Sigma_{n}}(E)^{\oplus a} \xrightarrow{i} \mathcal{E} \xrightarrow{p} \mathcal{O}_{\Sigma_{n}}^{\oplus r-a} \longrightarrow 0$$

$$\downarrow^{A} \qquad \downarrow^{A} \qquad \downarrow^{C}$$

$$0 \longrightarrow \mathcal{O}_{\Sigma_{n}}(E)^{\oplus a} \xrightarrow{i'} \mathcal{E}' \xrightarrow{p'} \mathcal{O}_{\Sigma_{n}}^{\oplus r-a} \longrightarrow 0$$

which is commutative. \Box

Example 2.3. It should be pointed out that two isomorphic complexes of the form (2.1) may fail to be isomorphic *as extensions*. Indeed, if \mathcal{E} fits into an extension of the form (2.1), of course it fits also into the extension

$$0 \longrightarrow \mathcal{O}_{\Sigma_n}(E)^{\oplus a} \xrightarrow{\lambda i} \mathcal{E} \xrightarrow{p} \mathcal{O}_{\Sigma_n}^{\oplus r-a} \longrightarrow 0 , \qquad (2.3)$$

for any $\lambda \in \mathbb{C}^*$. It is easy to see that the two sequences (2.1) and (2.3) are isomorphic as complexes, but, if $\lambda \neq 1$, not as extensions. \square

Download English Version:

https://daneshyari.com/en/article/5499975

Download Persian Version:

https://daneshyari.com/article/5499975

<u>Daneshyari.com</u>