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a b s t r a c t

We detail the construction of a weak Poisson bracket over a submanifold Σ of a smooth
manifold M with respect to a local foliation of this submanifold. Such a bracket satisfies
a weak type Jacobi identity but may be viewed as a usual Poisson bracket on the space of
leaves of the foliation.We then lift this weak Poisson bracket to aweak odd Poisson bracket
on the odd tangent bundleΠTM , interpreted as aweak Koszul bracket on differential forms
onM . This lift is achieved by encoding the weak Poisson structure into a homotopy Poisson
structure on an extended manifold, and lifting the Hamiltonian function that generates
this structure. Such a construction has direct physical interpretation. For a generic gauge
system, the submanifold Σ may be viewed as a stationary surface or a constraint surface,
with the foliation given by the foliation of the gauge orbits. Through this interpretation, the
lift of the weak Poisson structure is simply a lift of the action generating the corresponding
BRST operator of the system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and background

When considering classical gauge systems, one usually starts with a Lagrangian or Hamiltonian function which may
then be used to derive the equations of motion through the least action principle. In most cases this function is known, but
in those that are not, it is known that the existence of a classical BRST differential allows one to identify the equations
of motion and the gauge symmetries independently of the Lagrangian. Such a BRST differential is a homological vector
field on an appropriately extended manifold which encodes the gauge system [1]. In [2], a general geometric set-up for
an arbitrary gauge system was described, and an embedding of such a system into an extended manifold was constructed.
This is without reference to any Lagrangian or Hamiltonian function and merely assumes the existence of the equations
of motion, together with the gauge symmetries present. This geometric construction introduced a weak Poisson bracket,
a Poisson bracket that satisfies a weak Jacobi identity, which allows a quantisation of these gauge systems which may not
be Lagrangian or Hamiltonian. This paper is about lifting this weak Poisson bracket to the algebra of differential forms by
utilising the described embedding into the extended manifold.

For an arbitrary smooth manifold M with local coordinates (xi), let the system of equations T a(x) = 0, a = 1, . . . , k,
define a smooth submanifold Σ of codimension k. Choose n linearly independent vector fields Rα on M such that they are
tangent toΣ . (In fact, linear independence is not necessary but simplifies the exposition, see Remark 1.) For a corresponding
gauge system in the Lagrangian formalism, the equations T a(x) = 0may be identified with the equations of motion, possibly
derived from an action principle, whilst the manifoldM is understood as the space of trajectories in a configuration space of
the system. The vector fields Rα then generate the gauge symmetries of the action. If we consider the Hamiltonian formalism,
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then the surface Σ may be identified with the constraint surface given by the constraint equations T a(x) = 0. The vector
fields correspond to the gauge generators which define a foliation of the submanifold Σ into gauge orbits identified with
the integral submanifolds.

To obtain this foliation, it is required for the vector fields to form an integrable distribution over Σ; they must satisfy the
commutation relation

[Rα, Rβ ] = f γ

αβRγ + T aXaαβ , (1)

for smooth functions f γ

αβ and vector fields Xaαβ on M . Notice that the presence of the constraint terms T a means that this is
an open Lie algebra over M that closes only over Σ . The space of leaves N of the foliation of Σ generated by this integrable
distribution gives the true physical degrees of freedomwhen viewed as a gauge system. Because of this, physically interesting
objects are those that descend to the leaf space, i.e. those which are constant over the gauge orbits which are identified with
the integral submanifolds. In the work [2], a function or multivector field was defined to be projectible precisely when it
may be considered as a smooth contravariant tensor field on the leaf space N . In general, the space N may not be smooth.
When we say smooth in this sense, we refer to those smooth tensor fields T on M which are constant along the integral
submanifolds:

LRαT = T αRα + T aTa,

for smooth tensor fields Ta, T α; here LRαT is the Lie derivative along the vector field Rα . Therefore, we should consider
projectible multivector fields as physically interesting. Indeed, examples include: vector fields Rα that correspond to the
gauge generators, vector fields that introduce dynamics into the gauge system, and bivector fields which can induce Poisson
structures in the algebra of functions of N . (In physical literature the algebra of functions on N , identified with projectible
functions on M , is called the algebra of physical observables.) Such a Poisson structure on N , specified by an appropriate
projectible bivector field on M , induces a weak Poisson bracket on M . This is a Poisson bracket on M corresponding to the
same projectible bivector field, but which satisfies only a weak Jacobi identity; a Jacobi identity that holds over Σ up to
terms proportional to the vector fields Rα .

An embedding of this foliation together with a weak Poisson bracket was detailed, [2], into which the information was
encoded into a single function S on an extended manifold. This embedding corresponds to reformulating the theory in
terms of the BRST language [1]. The function S is called the master function and corresponds to the action associated to the
gauge system. Such a function contains all the information present in the gauge system, and generates the BRST operator,
a homological vector field on the extended manifold. This extended manifold is the original manifold M appropriately
extended by ghost variables. The notion of projectibility was then entwined with the BRST operator of the theory, where
it was shown that projectible multivector fields are cocycles of this BRST operator considered as a differential on the larger
algebra of functions.

The BRST operator may be considered as a unary bracket in a homotopy Poisson structure (a P∞-structure), which is
generated by the master function S on the extended manifold. The weak Poisson bracket on M embeds into this homotopy
Poisson structure, and is recovered as the restriction of the binary bracket toM . In the work [3] an explicit construction was
given to canonically lift a homotopy Poisson structure to an odd homotopy Poisson structure (an S∞-structure) on the odd
tangent bundle. By applying this construction, the even homotopy Poisson structure may be lifted to the odd tangent bundle
of the extendedmanifold, to produce the corresponding odd homotopy structure. Through this wemay define aweak Koszul
bracket on the odd tangent bundle ΠTM . This weak bracket is the restriction of the binary bracket in this odd homotopy
Poisson structure, and corresponds to the weak Poisson bracket onM in precisely the sameway that the well-known Koszul
bracket of forms corresponds to a Poisson structure.

The Koszul bracket is a natural odd extension of the usual even Poisson bracket. A natural even extension to the entire
algebra of forms does not exist; however, in the works [4,5], it was shown that a Poisson bracket induces a genuine even
Poisson bracket in the space of co-exact forms—differential forms modulo the exact forms. The exterior differential d from
co-exact forms into differential forms was shown to be a homomorphism of Lie algebras, taking the even Poisson bracket on
co-exact forms to the odd Koszul bracket on exact forms. The exact forms in this case form an ideal in the graded Lie algebra
of forms endowed with the Koszul bracket.

The extension of the algebra of physical observables by differential forms now implies a proper generalisation of the
notion of a physical state. Regarding the usual classical states, the points of a phase space, as 0-cycles in the sense of algebraic
topology, it is natural to consider the cycles of higher degrees represented by higher-dimensional closed surfaces, possibly
with singularities. These may be viewed as sort of mixed states in classical mechanics, when only part of the physical data
is exactly known about the system. Integration of co-exact forms over cycles then yields the measured values of physical
observables in suchmixed states. From this perspective, the construction of theweakKoszul bracket on formsbeingproposed
in this paper, extends the previous results of [4,5] to the case of constrained and gauge invariant dynamical systems. More
precisely, it may be shown that each weak Koszul bracket induces a genuine Poisson bracket in the space of projectible
co-exact forms, and the dynamics of form-valued physical observables are governed by a projectible vector field compatible
with the Poisson bracket. We will detail this construction elsewhere.

In Sections 2 and 3 we review the construction introduced in the work [2]. We recall the weak Poisson bracket and the
embedding of the geometrical set-up into the extended manifold. After, we discuss the relationship between projectible
multivector fields and the homological vector field, the BRST operator of an associated gauge system. In Section 4 the
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