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a b s t r a c t

The Clebsch potential approach to fluid lagrangians is developed in order to establish
contact with other approaches to fluids. Three variants of the perfect fluid approach are
looked at. The first is an explicit linear lagrangian constructed directly from the Clebsch
potentials, this has fixed equation of state and explicit expression for the pressure but is
less general than a perfect fluid. The second is lagrangians more general than that of a
perfect fluid which are constructed from higher powers of the comoving vector. The third
is lagrangians depending on two vector fields which can represent both density flow and
entropy flow.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

The motivation of this paper is to provided a unified approach to the various ways that fluids are described in physics.
In particular the methods used by relativists, fluid mechanists, and nuclear physicists have grown distinct. In many areas of
physics a unified approach is provided by the Lagrange method, which for fluids is developed here.

1.2. Methodology

The methodology used is first to simplify a perfect fluid in order to investigate if methods of field theory can be applied
to it; and then to generalize a perfect fluid to try and establish contact with more physical fluids.

1.3. Other approaches to fluids

A perfect fluid has a variational formulation [1–4] which uses the first law of thermodynamics. In such a formulation
Clebsch potentials [5–10] for the comoving fluid vector field are used. Here this approach is both applied to less general fluids
and to more general fluids. Other approaches to fluids include the following twelve. The first uses lagrangians dependent on
combinations of Clebsch potentials which do not necessarily form a vector [11]. The second is that the comoving vector can
be thought of as Ua

= ẋa, so that a perfect fluid is a type of generalization of a point particle, then there turns out to be a fluid
generalization of a membrane [12]. The third is that the charge substitution ∂a → ∂a + ıeAa can be applied to fluids as well
as fields and this leads to a model of symmetry breaking [13]. The fourth is that the Navier–Stokes equation has a lagrangian
formulation [14–18], but the lagrangian has different measure and also image fields. The fifth is that hydrodynamics can be
expressed using a grad expansion [19–23] which needs an entropy vector. The sixth is that contemporary bjorken models
use the grad expansion [24–28]. The seventh is fluid plasmas [29,30]. The eighth is elastic models [31] §3, where the density
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rather than the pressure is used as the lagrangian. The ninth is other quantization methods such as brst and path integral
applied to fluids [32]. The tenth is superfluids [33]. The eleventh is spinning fluids [34–36]. The twelfth is cosmology [37],
where Clebsch potentials have been used [38–42].

1.4. Conventions

The word potential is disambiguated by referring to potentials for a vector field as Clebsch potentials and potentials that
occur in Lagrange theory as coefficient functions. When a measure is suppressed it is

∫ √
−gdx4 not

∫
dτ unless otherwise

stated. µ is density and P is the pressure. q is a Clebsch potential. σ is used for a Clebsch potential, a pauli matrix and the
shear of a vector, to disambiguate the pauli matrix is always σp and the shear labels with which vector it is with respect to
U
σ . Capital Π indicates a momentum with respect to the proper time τ not the coordinate time t . a, b, c, . . . are spacetime
indices, i, j, k, . . . label sets of fields and momenta, and ι, κ, . . . label constraints. The signature is − + ++.

2. The perfect fluid

For a perfect fluid the lagrangian is taken to be the pressure L = P , and the action is

I =

∫
dx4P. (1)

The Clebsch potentials are given by

hVa = Wa = σa + θsa, VaV a
= −1, (2)

where if more potentials are needed it is straightforward to instate them; there are several sign conventions for (2). The
Clebsch potentials are sometimes given names: σ is called the higgs because it has a similar role to the higgs field in
symmetry breaking using fluids [11,13], θ is called the thermasy and s the entropy [3]. Variation is achieved via the first
law of thermodynamics

δP = nδh − nTδs = −nVaδW a
− nTδs, nh = µ + P, (3)

where n is the particle number and h is the enthalpy. Metrical variation yields the stress

Tab = (µ + P)VaVb + Pgab, (4)

the nöther currents ja = δI/δqa are

jaσ = −nV a, jaθ = 0, jas = −nθV a, (5)

variation with respect to the Clebsch potentials gives

(nV a)a = ṅ + nΘ = 0, ṡ = 0, θ̇ = T , (6)

where Θ ≡ V a
.;a is the vectors expansion: thus the conservation of the nöther currents (5) gives the same equations (6) as

varying the Clebsch potentials; the normalization condition VaV a
= −1 and (6) give

σ̇ = −h. (7)

The Bianchi identity is

T ab
..;b = nẆ a

+ P ,a, (8)

substituting forW using (2) and for P using (3) this vanishes identically. If one attempts to apply existing scalar field Fourier
oscillator quantization procedures to the above there is the equation

W a
.;a = □σ + θasa + θ□s =

(
hV a)

a = ḣ + hΘ = ḣ −
ṅ
n
h = h

(
ln

(
h
n

))◦

, (9)

and if this vanishes the enthalpy n is proportional to the particle number n, for an example of this see Section 3. The
pressure P and density µ are only implicitly defined in terms of the Clebsch potentials so it is not clear what operators
should correspond to them. Another possibility is to note that (6) are first order differential equations and to try and replace
them with spinorial equations; however this would require a spinorial absolute derivative in place of the vectorial absolute
derivative, see [43] §4.4.

The canonical Clebsch momenta are given by Π i
= δI/δq̇i

Πσ
= −n, Π θ

= 0, Π s
= −nθ, (10)
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