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a b s t r a c t

A new technique is introduced to study the completeness of inextensible electromagnetic
trajectories in an n(≥2)-dimensional stationary spacetime. Sufficient conditions on an
electromagnetic field on a stationary spacetime are imposed to ensure that the associated
(n + 1)-dimensional Kaluza–Klein bundle spacetime is itself stationary. The problem is
then reduced to the geodesic completeness of the corresponding Kaluza–Klein bundle
spacetime. Applications are given specially to the case of a standard static spacetime.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let (M, g) be an n(≥2)-dimensional spacetime and F an electromagnetic field onM , i.e., a closed 2-formon the spacetime.
Let us consider the following second order differential equation,

Dγ ′

dt
=

q
m

F(γ ′), (E)

where F the skew-adjoint (1, 1) tensor field defined by F via g , i.e., F(X, Y ) = g(X,F(Y )), for all X, Y ∈ X(M), D/dt
represents the Levi-Civita covariant derivative along γ , γ ′ the velocity of γ and q ∈ R, m > 0 are constants.

Given p ∈ M and an initial velocity v ∈ TpM , there exists a unique (inextensible) solution γ : I −→ M , 0 ∈ I , of Eq. (E)
satisfying (see for instance [1, Th. 3.8.3]),

γ (0) = p, γ ′(0) = v.

The differential equation (E), well-known in General Relativity, is called the Lorentz force equation (see for instance
[1, Def. 3.8.1] and its solutions are called electromagnetic trajectories in spacetime. In the case g(v, v) = −m2, from
the skew-symmetry of F , any solution γ of Eq. (E) satisfies g(γ ′(t), γ ′(t)) = −m2 everywhere and thus it represents
a relativistic particle in spacetime [1, Def. 3.1.1]. Thus, the Lorentz force equation governs the dynamics of a relativistic
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charged particle, with mass m > 0 and electric charge q, in presence of an electromagnetic field F . Such particles will be
called electromagnetic trajectories along the paper.

For a trivial electromagnetic field, i.e., F = 0, the solutions of Eq. (E) are indeed the geodesics of the spacetime (M, g).
It is well-known that they are characterized as critical points of the energy functional (timelike geodesics represents free
falling particles and lightlike geodesics photons in spacetime). However, if F ≠ 0 then there exists no affine connection on
M whose geodesics are the electromagnetic trajectories in spacetime [2, Prop. 2.1].

On the other hand, the electromagnetic field F is locally exact from the classical Poincaré Lemma. If F is assumed to be
globally exact, i.e., F = dµ for some globally defined potential 1-form µ, then the same argument as in [2] shows that the
Lorentz force equation is indeed the Euler–Lagrange equation of a natural variational problem.

In general, the interval of definition I of an inextensible solution γ of Eq. (E) is not the whole real line. When I = R, the
solution γ is said to be complete. In the case γ is a timelike curve, it may be interpreted as saying that the charged particle
lives forever in spacetime. Our aim in this article is to find suitable assumptions on the electromagnetic field and on the
spacetime in order to get that any inextensible electromagnetic trajectory is complete. Let us recall that the extendibility of
the solutions to a certain second order differential equation on a Riemannian manifold, which formally extends Eq. (E) in
this case, have been analyzed in [3]. The technique used in this paper strongly depends on the positive definite character of
the metric and it is not directly generalizable to the Lorentzian case. It is proven in [4, Th. 1] that on a compact Lorentzian
manifold (M, g)which admits a timelike conformal vector field K any inextensible solution of Eq. (E), for an electromagnetic
field F such that the observers in the reference frame K/

√
−g(K , K) perceive no electric vector field [1, p. 75], must be

complete.
Our approach here is new and different from the one in [4]. In fact, we will reduce the completeness of the inextensible

solutions of (E) on a Lorentzian manifold (M, g) to the geodesic completeness of another Lorentzian manifold (M, g), the
Kaluza–Klein bundle spacetime associated toM and the corresponding electromagnetic field F , which is a U(1)-bundle and
the total spacetime of a semi-Riemannian submersion on M . Next, after assuming the existence of a timelike infinitesimal
isometry on M we look for reasonable assumptions on M to get the geodesic completeness mainly without assuming the
compactness ofM .

The content of the paper is organized as follows: Section 2 is devoted to recall several facts on Kaluza–Klein’s theory.
The infinitesimal symmetry imposed on the spacetime is introduced in Section 3, in particular the notion of standard
static spacetime is recalled. In Section 4 the Kaluza–Klein semi-Riemannian submersion is studied and sufficient conditions
to ensure that the Kaluza–Klein spacetime associated to a stationary spacetime with an electromagnetic field is itself
stationary are obtained (Proposition 4.1). Finally, in Section 5 we prove our main and more general result on completeness
of inextensible electromagnetic trajectories (Theorem 5.1). Applications are then derived to the case of a standard
static spacetime (Corollary 5.2) and to the case, with only mathematical relevance, of a compact stationary spacetime
(Corollary 5.5).

2. Preliminaries

A spacetime is a time orientable n(≥2)-dimensional Lorentzian manifold (M, g) endowed with one fixed time orienta-
tion. Along this paper we will denote a spacetime byM and, as usual, we will refer sometimes the points ofM as events.

We recall that a particle of mass m > 0 in spacetime M is a (smooth) future pointing unit timelike curve γ : I −→ M ,
where I an open interval of the real lineR, which satisfies g(γ ′(t), γ ′(t)) = −m2. A particlewithm = 1 is called an observer
and its parameter t represents then its proper time.

Let us consider an electrically charged particle, i.e., a triple (γ ,m, q), where γ is a particle, m > 0 its mass and q ∈ R its
charge, in presence of an electromagnetic field F , i.e., a closed 2-form onM . The dynamics of the particle is totally described
by the Lorentz force equation (E), and the vector fieldF(γ ′) along γ is interpreted as the electric field relative to γ , [1, p. 75].

Electromagnetism may be described through a U(1)-principal fiber bundle over the spacetime M , π : M −→ M . The
electromagnetic field is then codified by means of a connection ω : TM −→ g, where g(∼=R) is the Lie algebra of U(1). In
this context, the electromagnetic field onM essentially corresponds with the curvature form Ω := dω onM , here d denotes
the exterior covariant derivative, namely, dω = (π∗F) ζ , where ζ is a fixed generator of g (see for instance [5, 1.2.7]). This
follows an old unifying idea due to Kaluza [6] and Klein [7] (see [5, Chap. 9] for amodern and general handling). It is assumed
that the unobservablemanifoldM is endowedwith aU(1)-invariant Lorentzianmetric g of the form g = π∗g+ω∗gg, that is,

g(U, V ) = g(dπ(U), dπ(V )) + gg(ω(U), ω(V )), (1)

where U, V ∈ X(M) and gg is an adjoint-invariant positive definite inner product on g, normalized by gg(ζ , ζ ) = 1. Thus,
from the Lorentzian manifold (M, g) and the electromagnetic field F we have a new Lorentzian manifold (M, g) such that
the fundamental vector field D corresponding to ζ is Killing and g(D,D) = 1, thus the vertical vector field D is spacelike.
Therefore, the connection form may be then expressed as follows

ω = g(D, · ) ζ . (2)

Let us point out that the associated Kaluza–Klein bundle is unique [8], although the connection is not uniquely determined
by F , and the map π is a semi-Riemannian submersion in the sense of [9].
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