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a b s t r a c t

We show that supercocycles on super L∞-algebras capture, at the rational level, the twisted
cohomological charge structure of the fields of M-theory and of type IIA string theory.
We show that rational 4-sphere-valued supercocycles for M-branes in M-theory descend
to supercocycles in type IIA string theory with coefficients in the free loop space of the
4-sphere, to yield the Ramond–Ramond fields in the rational image of twisted K -theory,
with the twist given by the B-field. In particular, we derive the M2/M5 ↔ F1/Dp/NS5
correspondence via dimensional reduction of sphere-valued super-L∞-cocycles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

(Super)cocycles play an important role in the study of the geometric and topological structures associated with physical
theories (see [1] for an earlier survey). In [2] we discussed cocycles of super L∞-algebras (super Lie n-algebras for arbitrary
n) forming the brane bouquet that gives the WZW terms of all the Green–Schwarz sigma models for all the branes in string
theory and M-theory. This includes those with gauge fields on their worldvolume, the D-branes and the M5-brane, which
were missing in the classical brane scan.

In [3] we had shown that this approach allows deriving the rational image of a twisted cohomology theory that unifies
the M2-brane charges and the M5-brane charges (this is recalled in Section 2). Rationally this cohomology theory turns out
to be represented by the 4-sphere, hence is cohomotopy in degree 4. This is in higher analogy to the familiar statement that
the unification of Dp-brane charges with the F1-brane charge ought to be in twisted K-cohomology theory. (That the fields
ofM-theory should take values in the 4-sphere was first suggested in [4,5].)

In Section 3 we show, at the rational level, that indeed the twisted M2/M5 charges in degree-4 cohomotopy in 11
dimensions dimensionally reduce to the twisted K -theory of the F1/Dp/NS5-brane charges in 10 dimensions (for p ∈
{0, 2, 4}), where the dimensionally reduced cohomology theory is represented by the rationalization of the homotopy
quotient LS4//S1 of the free loop space of the 4-sphere. In particular this exhibits a purely L∞-theoretic derivation, at the
rational level, of twisted K -theory as the home of the brane charges in type II string theory. The lift of this twisted charge
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structure toM-theory has been an open problem. Thismay be viewed as one confirmation at the rational level of the proposal
in [4,5] on the description ofM-theory via twisted generalized cohomology.

In the existing literature, the cocycles for the WZW terms of the Dp-branes are instead constructed separately as
independent cocycles on extended super-Minkowski spacetime (see [3] for references and for the super L∞-algebraic
formulation). In Section 4 we show that the same L∞-descent mechanism which unifies the M2- and M5-brane charges
also applies to the separate Dp-brane cocycles, and they descend to again a single cocycle with coefficients in (the rational
image of) the relevant truncation of twisted K -theory.

The techniques that we use are from geometric homotopy theory [6], cast in computationally powerful algebraic
language. Lecture notes accompanying the discussion here may be found in [7]. We consider super L∞-algebras as in [8,2].
These are generalizations of super Lie algebras to super Lie n-algebras, for arbitrary n, where instead of just a super Lie
bracket we have brackets of all arities with the Lie bracket being the binary one. More precisely, our construction takes
place in the homotopy category of super L∞-algebras, so that a morphism from a super L∞-algebra g to a super L∞-algebra
h will actually be a span of morphism

g
∼
←− g̃→ h

where g̃
∼
−→ g is a quasi-isomorphism, i.e., an L∞-morphism inducing an isomorphism of graded vector spaces at the level

of cohomology from H•(g̃) to H•(g). Passing from g to g̃ is an example of resolution. This concept has many incarnations,
depending on the context (homotopic, fibrant, cofibrant, projective, injective). For us, what is important is that is a concept
of equivalence within a category between the object at hand and another (or a combination of such) that generally behaves
in a more utilizable way within the same category.

Furthermore, we will make constant use of the duality between (finite type) super L∞-algebras and differential graded-
commutative super-algebras, identifying a super L∞-algebra g with its Chevalley–Eilenberg algebra CE(g) as in [8]. These
Chevalley–Eilenberg algebras of super L∞-algebras arewhat are called FDAs in the supergravity literature (going back to [9]).
The point of identifying these as dual to super L∞-algebras is to make manifest their higher gauge theoretic nature and the
relevant homotopy theory, which is crucial for the results we present here. For instance, for p ∈ N, the line (p+ 2)-algebra
bp+1R, i.e., the chain complex with R in degree p + 1 and zeros everywhere else, corresponds to the Chevalley–Eilenberg
algebra

CE(bp+1R) :=

R[gp+2]; dgp+2 = 0


,

where the generator gp+2 has degree p+ 2.
Notice that CE(bp+1R) is the minimal Sullivan model for the rational space Bp+2R, reflecting the fact that bp+1R is the

L∞-algebra corresponding to the∞-group Bp+1R ≃ ΩBp+2R. In order to amplify this relation between L∞-algebras and
rational homotopy theory, we also write l(X), or simply lX , for the L∞-algebra whose CE-algebra is a given Sullivan model
of finite type for some rational space X:

l(X) = L∞-algebra dual to given Sullivan model (AX , dX ) for rationalization of X

i.e.

CE(l(X)) := (AX , dX ).

See Appendix A for more details on rational homotopy theory and Sullivanmodels. For example, with this notation then the
rationalized spheres Sn are incarnated as

CE(lSn) =

(R[gn], dgn = 0) for n odd
(R[gn, g2n−1], dgn = 0, dg2n−1 = gn ∧ gn) for n > 0 even.

A convenient feature of the dual picture is the following: if CE(h) → CE(g) is a relative Sullivan algebra, that is, a cofi-
bration in the standard model structure on differential graded commutative algebras (DGCAs), then the corresponding
L∞-morphism g → h is a fibration in the model structure whose fibrant objects are L∞-algebras, due to [10, prop. 4.36,
prop. 4.42]. Although relative Sullivan algebras do not exhaust fibrations of L∞-algebras, they are flexible enough to allow
us to realize all the fibrations we will need in the present article as relative Sullivan algebras. See [11] for more on the
homotopy theory of L∞-algebras as a category of fibrant objects.

The model structure whose fibrant objects are L∞-algebras in [10] is for ordinary L∞-algebras, not for super
L∞-algebras that we consider here. Nevertheless, the result is readily adapted: A super L∞-algebra g determines a functor
Λ → (g ⊗ Λ)even with values in ordinary L∞-algebras on the category of finitely generated Grassmann algebras Λ, and
this construction embeds super L∞-algebras into this functor category. (For super Lie algebras this was observed in [12],
see [13] and [14, Cor. 3.3].) Now, by [10, Theorem 4.35], the opposite model structure for ordinary L∞-algebras is cofibrantly
generated, and so a standard argument [15, section 11.6] gives that this functor category inherits the corresponding
projectivemodel structure. That is themodel structure inwhich the computations in this paper take place. However,weneed
to invoke only a bareminimumofmodel category theory; all we use is the computation of homotopy fibers as ordinary fibers
of fibration resolutions. In the following we will find it very useful to succinctly capture results via (commuting) diagrams.
We will use the notation hofib(φ) to indicate the homotopy fiber of a morphism φ.
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