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a b s t r a c t

This paper provides a construction of a quantumstatisticalmechanical systemassociated to
knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in
the sense of arithmetic topology, of the Bost–Connes system, with knots replacing primes,
and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of
rational numbers. The operator algebraic properties of this system differ significantly from
the Bost–Connes case, due to the properties of the action of the semigroup of knots on
a direct limit of knot groups. The resulting algebra of observables is a noncommutative
Bernoulli product. We describe the main properties of the associated quantum statistical
mechanical system and of the relevant partition functions, which are obtained from simple
knot invariants like genus and crossing number.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses a question asked to the first author by Masanori Morishita, on the possibility of adapting to
3-manifolds the Bost–Connes construction [1] of a quantum statistical mechanical system associated to the abelian
extensions ofQ, and its generalizations to number fields [2–5], along the lines of the general ‘‘arithmetic topology’’ program.
The latter can be seen as a broad dictionary of analogies between the geometry of knots and 3-manifolds and the arithmetic
of number fields, with knots as analogs of primes and 3-manifolds, seen as branched coverings of the 3-sphere, viewed as
analogs of number fields. In this paper we answer Morishita’s question by providing explicit constructions of quantum
statistical mechanical systems associated to (alternating) knots, to knot groups, and to cyclic branched covers of the
3-sphere, with the latter providing our analog of the abelian extensions of Q in the Bost–Connes construction. The structure
of the resulting quantum statistical mechanical systems is different from the Bost–Connes case and it leads to an algebra
of observables that can be expressed in the form of a Bernoulli crossed product, of the type studied in noncommutative
Bernoulli actions in the theory of factors. We relate the geometry and dynamics of our system to known invariants of knots
and 3-manifolds.

1.1. The principle of arithmetic topology

Arithmetic topology originates from insights by John Tate and Michael Artin on topological interpretations of class field
theory. The analogy between primes and knots, which is the founding principle of Arithmetic Topology, was first observed
by Barry Mazur, David Mumford, and Yuri Manin. The subject developed over the years, with various contributions, such as
[6–13], as a powerful guiding principle outlining parallel results and analogies between the arithmetic of number fields and
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the topology of 3-manifolds. The basic analogy sees number fields as analogs of compact oriented 3-manifolds, with Q play-
ing the role of the 3-sphere S3. Here the main idea is that, while number fields are finite extensions of Q, ramified at a finite
set of primes, all compact oriented 3-manifolds can be described as branched coverings of the 3-sphere, branched along a
link. Amajor point where this analogy does not carry over is the fact that, while the description of a number field as ramified
covering of Q is unique, there are many inequivalent ways of describing 3-manifolds as branched covers of the 3-sphere,
branched along knots or links (or more generally embedded graph). While this lack of uniqueness for 3-manifolds can be
used to make the construction dynamical, see [14], the same dynamics does not apply to number fields. However, the cor-
responding analogy between knots and primes, that results from this first analogy between number fields and 3-manifolds,
has been very fruitful, leading to many new results, ranging from arithmetic analogs for higher linking numbers [9,10], to
arithmetic Chern–Simons theory [8].

Over the past two decades, the connection between number theory and quantum statistical mechanics was also widely
explored, starting with early constructions of statistical systems associated to the primes, [15,16], the more refined
Bost–Connes system [1] which also involves the Galois theory of abelian extensions of Q, and subsequent generalizations
of this construction to arbitrary number fields, obtained in [4] and further studied in [3,17,5,18]. The purpose of the present
paper is to recast the Bost–Connes construction in the setting of arithmetic topology, with the semigroup of knots with the
connecting sum operation replacing the multiplicative semigroup of positive integers, and the cyclic branched coverings of
the 3-spheres replacing the abelian extensions of Q.

1.2. Bost–Connes system

We recall briefly the construction of the Bost–Connes algebra and quantum statistical mechanical system from [1] (see
also [19] and §3 of [20]). Consider the group ring Q[Q/Z]with generators e(r)with r ∈ Q/Z. The maps {σn}n∈N given by

σn(e(r)) := e(nr) (1.1)

determine an action of the semigroup N by endomorphisms of the group ring Q[Q/Z]. These endomorphisms have partial
inverses αn : Q[Q/Z] → Q[Q/Z],

αn(e(r)) =
1
n


s: ns=r

e(s) (1.2)

with σn ◦ αn(e(r)) = e(r) and αn ◦ σn(e(r)) = en · e(r), with en = n−1


s: ns=0 e(s) an idempotent in Q[Q/Z]. Thus, one can
define the semigroup crossed product. This is the (rational) Bost–Connes algebra ABC,Q = Q[Q/Z] o N with generators µn
and e(r) and relations

µ∗nµn = 1, µnµ
∗

n = en, µnµm = µnm, µnµ
∗

m = µ
∗

mµn for (n,m) = 1, (1.3)

µne(r)µ∗n = αn(e(r)), µ∗ne(r)µn = σn(e(r)). (1.4)

The complexification ABC,C = ABC,Q⊗Q C has a C∗-algebra completion given by the semigroup crossed product ABC =

C∗(Q/Z) × N, with the same generators and relations. The time evolution of the Bost–Connes system is defined by
σt(µn) = nitµn and σt(e(r)) = e(r). The algebra ABC has representations on the Hilbert space ℓ2(N), parameterized by
the choice of an element u ∈ Ẑ∗, of the form

πu(e(r))ϵm = u(r)m ϵm, πu(µn)ϵm = ϵnm, (1.5)

where u(r) is a root of unity in C determined by the embedding of Q/Z ↩→ C specified by the choice of u ∈ Ẑ∗, where we
identify Ẑ = Hom(Q/Z,Q/Z).

Given a pair (A, σ ) of a C∗-algebra and a time evolution σ : R→ Aut(A), a KMSβ state for (A, σ ) is a continuous linear
functional ϕβ : A→ C satisfying normalization ϕβ(1) = 1 and positivity ϕβ(a∗a) ≥ 0 (that is, a state on A) such that, for
all a, b ∈ A there is a function Fa,b(z) that is holomorphic on the strip Iβ = {z ∈ C : 0 < ℑ(z) < β} and continuous on
the boundary ∂Iβ of the strip, such that

Fa,b(t) = ϕβ(aσt(b)), Fa,b(t + iβ) = ϕ(σt(b)a). (1.6)

In other words, the failure of a KMSβ to be a trace is measured by interpolation by a holomorphic function.
The KMS states of the Bost–Connes system (ABC , σ ) are completely classified and given by the following list of cases

(see [1]):

• for every 0 < β ≤ 1 there is a unique KMSβ state ϕβ determined by

ϕβ


e
a
b


=

f−β+1(b)
f1(b)

where fk(b) =


d|b µ(d)(b/d)
k, with µ the Möbius function;
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