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a b s t r a c t

A class of left-invariant second order reversible systemswith functional parameter is intro-
duced which exhibits the phenomenon of robust integrability: an open and dense subset
of the phase space is filled with invariant tori carrying quasi-periodic motions, and this
behavior persists under perturbations within the class.

Real-analytic volume preserving systems are found in this class which have positive
Lyapunov exponents on an open subset, and the complement filled with invariant tori.

© 2016 Published by Elsevier B.V.

1. Introduction

We study a family of second order dynamical systems on a locally homogeneous Riemannian space M , modeled on a
special solvable Lie group. The simplest example is the geodesic flow of a left-invariant metric. Our class generalizes the
examples discovered by Butler [1], and Bolsinov and Taimanov [2]. In these examples the complete integrability of the
geodesic flow in the tangent bundle TM is accompanied by highly non-integrable behavior on an invariant submanifold
of codimension n = dim M . The dynamics there is the suspension of a toral automorphism, and in [2] the hyperbolic
automorphism is chosen, which leads to an Anosov flow. The presence of an Anosov flow as a subsystem guarantees the
positivity of topological entropy.

We show that such a behavior extends to a larger class of left-invariant second order systems. This class is parametrized
by a matrix L and a functional parameter F : a smooth vector field in the unit ball of the Euclidean space. We call them L− F
systems. The equations of an L− F system can be written in coordinates (w, u; ξ, η)wherew ∈ Rn, ξ ∈ Rn, and u and η are
real variables

dξ
dt

= ηF(ξ),
dη
dt

= −⟨F(ξ), ξ⟩

dw
dt

= euLξ,
du
dt

= η.

(1)

The equations in the first line form a factor of the whole system, since they involve only the variables (ξ , η). We call them
the Euler equations, since they come from the usual projection of a left invariant system from the tangent bundle of a Lie
group to the Lie algebra. The Euler equations preserve spheres {ξ 2+η2 = const}, andwewill restrict the Euler system to the
unit sphere. Further for a given rank n lattice Γ0 ⊂ Rn we can consider the variableswmodulo Γ0 so that the configuration
space of our system becomes the manifoldM = Tn

× R ∋ (w, u), where the torus Tn
= Rn/Γ0.

To obtain a compact configuration space we need to assume that the linear map A = eL is an automorphism of the lattice
Γ0. In this case we can glue the tori {u = 0} and {u = 1} by the automorphism A. Namely we identify the points (w, 0) and
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(Aw, 1) for every w. The compact configuration space will be denoted by N . In our case it is a solvmanifold, a left quotient
N = Γ \ G of a solvable Lie group G by a lattice Γ ⊃ Γ0.

The crucial property of L − F systems is their J-reversibility, where J is the involution of the tangent bundle TM given by
J(w, u; ξ, η) = (−w, u; ξ,−η). Let us recall that a system is J-reversible if the involution J conjugates the forward in time
dynamics with the backward in time dynamics.

There is a vast literature devoted to J-reversible systems. The survey paper of Lamb and Roberts [3] contains an extensive
bibliography.

In particular there is a version of the KAM theory for the J-reversible systems. It goes back to Moser [4], and Sevryuk [5].
In our case we establish robust integrability: it persists under any small perturbation as long as we stay in the family of
L − F systems. Note that this family is parametrized by an infinite dimensional Banach space of vector fields F . What is
notable is that we do not assume volume preservation, the symmetries imposed on the system force the integrability, and
the occurrence of a finite absolutely continuous invariant measure. This measure has a density with respect to the Liouville
volume which is only C∞, and typically no real-analytic invariant density exists (Section 8).

The J-reversible KAM theory would give us large subsets of quasi-periodic motions for perturbations which are not
left-invariant, as long as they are J-reversible. We were unable to check the non-degeneracy of the unperturbed system
required for the application of the KAM theory. Howeverwe conjecture that the non-degeneracy does hold formost systems
under consideration.

Butler, [6,7], used themechanism discovered in [2] to obtain C∞ examples of integrable volume preserving systemswith
positive metric entropy. In our class we find whole families of real-analytic systems with positive metric entropy and a
subset filled with quasi-periodic motions, open but not dense (Section 9).

The phenomenon of robust integrability, accompanied by positive topological entropy occurs in particular for geodesic
flows of linear connections. The generalization of the geodesic flow of the Levi-Civita connection to more general linear
connections was discussed in [8]. Such a generalization appears naturally in the study of Gaussian thermostats, a class
of systems introduced by Hoover [9]. The paper of Gallavotti and Ruelle [10] introduces the Gaussian thermostats in the
physical context. In particular in our class of systemswe find a Gaussian thermostat with the following paradoxical behavior
(Section 10). For small kinetic energy the system is asymptotic to anAnosov flow,which has a large codimension in thewhole
phase space. For larger values of the kinetic energy the system undergoes a drastic change, it becomes integrable: an open
and dense subset in the phase space is filled with quasi-periodic motions. The Anosov subsystem is still present, but for a
subset of initial conditions of full Lebesgue measure the solutions stay away from that chaotic subsystem, and fill densely
invariant tori.
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We are grateful for her insights and hospitality.
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2. The configuration space

Our configuration space is a locally homogeneous Riemannian space modeled on a special Lie group G. We start its
description with the Lie algebra g. We assume that dim g = n+ 1 and that g contains an n dimensional abelian ideal g0. We
choose an arbitrary scalar product in g, and let b denote a unit vector orthogonal to g0. Since the ideal g0 is assumed to be
abelian the Jacobi identity imposes no conditions on the operator L : g0 → g0, L = adb. At this stage we place no restrictions
on the operator L. Later on we will consider various special cases. We endow the Lie group with the left invariant metric
determined by our choice of the scalar product in g.

The Levi-Civita connection∇ on the RiemannianmanifoldG can be expressed as a tensor on g. It can be calculated directly,
which is done in the fundamental paper of Milnor [11], where extensive explanations can be found. The formulas read

∇bb = 0, ∇bξ = Aξ, for ξ ∈ g0,

∇ξb = −Sξ, ∇ξ ζ = ⟨Sξ, ζ ⟩b, for ξ, ζ ∈ g0
(2)

where S =
1
2 (L + L∗) and A =

1
2 (L − L∗) denote the symmetric and skew-symmetric parts of the operator L.

The Lie algebra has an important automorphism K : g → g, where −K is equal to the euclidean reflection in g0. There
are only few Lie algebras with this kind of additional symmetry. It is not difficult to enumerate all of them. Our class of Lie
algebras is singled out by the additional property that the invariant subspace of K is a subalgebra.

Since the automorphism K is orthogonal it generates the automorphism K of the Lie group Gwhich is an isometry. This
isometry will play crucial role in our discussion. Let us note that both K and K are involutive, i.e., K = K−1,K = K−1.

The Lie group has the following matrix representation, which we will also denote by G. It consists of matrices with the
block form

1 0
w euL


, w ∈ Rn, u ∈ R.
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