ARTICLE IN PRESS

Journal of Geometry and Physics [(]]] .

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Monodromy of Hamiltonian systems with complexity 1 torus actions

K. Efstathiou, N. Martynchuk*

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands

ARTICLE INFO

Article history: Received 28 October 2015 Received in revised form 20 May 2016 Accepted 24 May 2016 Available online xxxx

Keywords: Principal bundle Curvature form Integrable Hamiltonian system Monodromy

1. Introduction

ABSTRACT

We consider the monodromy of *n*-torus bundles in *n* degree of freedom integrable Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian \mathbb{T}^{n-1} action. We show that orbits with \mathbb{T}^1 isotropy are associated to non-trivial monodromy and we give a simple formula for computing the monodromy matrix in this case. In the case of 2 degree of freedom systems such orbits correspond to fixed points of the \mathbb{T}^1 action. Thus we demonstrate that, given a \mathbb{T}^{n-1} invariant Hamiltonian *H*, it is the \mathbb{T}^{n-1} action, rather than *H*, that determines monodromy.

© 2016 Elsevier B.V. All rights reserved.

The, now classical, work by Duistermaat on obstructions to global action–angle coordinates in integrable Hamiltonian systems [1] highlighted the importance of the non-triviality of torus bundles over circles for such systems. Since then non-trivial monodromy has been demonstrated in several integrable Hamiltonian systems. We indicatively mention the spherical pendulum [1,2], the Lagrange top [3], the Hamiltonian Hopf bifurcation [4], the champagne bottle [5], the coupled angular momenta [6], the two-centers problem [7], and the quadratic spherical pendulum [8,9]. A common aspect of these systems is the presence of a symmetry given by a Hamiltonian \mathbb{T}^{n-k} action, where *n* is the number of degrees of freedom (for the two-centers problem k = 2 and for the other systems k = 1).

Remark 1.1. Hamiltonian \mathbb{T}^{n-k} actions on symplectic 2*n* manifolds are called *complexity k torus actions*. Classification of symplectic manifolds with such actions has been studied by Delzant in [10] (k = 0), and Karshon and Tolman in [11] (k = 1). We note that for integrable systems with a complexity 0 torus action monodromy is always trivial.

In the present paper we consider integrable *n* degree of freedom systems with a complexity 1 torus action, that is, a Hamiltonian \mathbb{T}^{n-1} action. Monodromy in such systems (along a given curve) is determined by n-1 free integer parameters. We will show that these parameters are related to singular orbits of the \mathbb{T}^{n-1} action via the *curvature form* of an appropriate principal \mathbb{T}^{n-1} bundle; see Theorems 3.2 and 3.4. Surprisingly, this relation has not been observed before. The usually adopted approaches to monodromy (see [12–17,2]) do not take into account the differential geometric invariants of the Hamiltonian \mathbb{T}^{n-1} symmetry, such as the curvature form and the *Chern numbers*. Moreover, these approaches are rather concentrated on the study of the whole *integral map*, that is, the Hamiltonian and the momenta that generate the \mathbb{T}^{n-1} action. Our results in this paper show that the Hamiltonian plays a secondary role to the momenta for determining monodromy.

* Corresponding author. *E-mail addresses:* K.Efstathiou@rug.nl (K. Efstathiou), N.Martynchuk@rug.nl (N. Martynchuk).

http://dx.doi.org/10.1016/j.geomphys.2016.05.014 0393-0440/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: K. Efstathiou, N. Martynchuk, Monodromy of Hamiltonian systems with complexity 1 torus actions, Journal of Geometry and Physics (2016), http://dx.doi.org/10.1016/j.geomphys.2016.05.014

2

ARTICLE IN PRESS

K. Efstathiou, N. Martynchuk / Journal of Geometry and Physics 🛚 (

Specifically, for 2 degrees of freedom systems monodromy is determined in terms of the fixed points of the Hamiltonian \mathbb{T}^1 action; see Theorem 3.10. For *n* degree of freedom systems monodromy is determined in terms of how the \mathbb{S}^1 isotropy group is expressed in a given basis of the \mathbb{T}^{n-1} action; see Theorem 3.15.

The paper is organized as follows. In Section 2 we specify our setting and recall necessary definitions from the theory of principal bundles. In Section 3 we formulate our main results that relate monodromy with singularities of the \mathbb{T}^{n-1} action; see Theorems 3.2, 3.4, 3.10 and 3.15. The proof of Theorem 3.2, which is more technical, is postponed to Section 5. In Section 4 we apply our techniques to various integrable systems. The paper is concluded in Section 6 with a discussion.

2. Preliminaries

Let *M* be a connected 2*n*-dimensional manifold with a symplectic form Ω . Since Ω is a non-degenerate 2-form, to every smooth function $F_1: M \to \mathbb{R}$ one can associate the so-called *Hamiltonian vector field* $X_{F_1} = \Omega^{-1}(dF_1)$. Suppose that we have *n* almost everywhere independent functions F_1, \ldots, F_n on *M* such that all *Poisson brackets* vanish:

$$\{F_i, F_j\} = \Omega(X_{F_i}, X_{F_j}) = 0.$$

Then we say that we have an integrable Hamiltonian system on M. The map

 $(F_1,\ldots,F_n)\colon M\to\mathbb{R}^n$

is called the *integral map* of the system. Everywhere in the paper we assume that the Assumption 2.1 hold (except for Section 5 where we work in a more general setting of a Hamiltonian \mathbb{T}^k action, $1 \le k \le n - 1$).

Assumptions 2.1. The integral map *F* is assumed to have the following properties.

- (1) *F* is proper, that is, for every compact set $K \subset \mathbb{R}^n$ the preimage $F^{-1}(K)$ is a compact subset of *M*.
- (2) The integral map F is invariant under a Hamiltonian \mathbb{T}^{n-1} action.
- (3) The \mathbb{T}^{n-1} action is free on $F^{-1}(R)$, where $R \subset \text{image}(F)$ the set of regular values of F.

Consider a regular simple closed curve $\gamma \subset R$ and assume that the fibers $F^{-1}(\xi), \xi \in \gamma$, are connected. By the Arnol'd–Liouville theorem we have a *n*-torus bundle

$$(E_{\gamma} = F^{-1}(\gamma), \gamma, F) \tag{1}$$

with respect to *F*. Take a fiber $F^{-1}(\xi_0)$, $\xi_0 \in \gamma$, and let T^{n-1} be any orbit of the Hamiltonian \mathbb{T}^{n-1} action on $F^{-1}(\xi_0)$. We choose a basis (e_1, \ldots, e_n) of the integer homology group $H_1(F^{-1}(\xi_0))$ so that (e_1, \ldots, e_{n-1}) is a basis of $H_1(T^{n-1})$. Since the Hamiltonian \mathbb{T}^{n-1} action is globally defined on E_{γ} , the generators e_j , $j = 1, \ldots, n-1$, are also 'globally defined', that is they are preserved under the parallel transport along γ . It follows that the monodromy matrix of the bundle (E_{γ}, γ, F) with respect to the basis (e_1, \ldots, e_n) has the form

	(1)	•••	0	m_1
	:	·	÷	÷
	0		1	m_{n-1}
1	\0		0	1/

We call $\vec{m} = (m_1, \ldots, m_{n-1}) \in \mathbb{Z}^{n-1}$ the *monodromy vector*. In Section 3 we relate \vec{m} to the curvature form of an appropriate principal \mathbb{T}^{n-1} bundle and then give a formula that allows us to compute \vec{m} in specific integrable Hamiltonian systems.

The assumption of the existence of a \mathbb{T}^{n-1} action made throughout this paper brings us in the context of principal torus bundles and their Chern numbers. We recall here some relevant definitions. For a detailed exposition of the theory we refer to Postnikov [18].

Consider a principal \mathbb{T}^{n-1} bundle (*E*, *B*, ρ). The structure group \mathbb{T}^{n-1} is isomorphic to the direct product of n-1 circles:

$$\mathbb{T}^{n-1} = \{ (e^{i\varphi_1}, \dots, e^{i\varphi_{n-1}}) \mid \varphi_j \in \mathbb{R} \} \subset \mathbb{C}^{n-1}.$$

The Lie algebra $T_e \mathbb{T}^{n-1}$ can be thus identified with $i \mathbb{R}^{n-1}$. The Lie bracket is identically zero since \mathbb{T}^{n-1} is a commutative group.

Let $A^{\#}$ denote the fundamental vector field generated by $A \in i\mathbb{R}^{n-1}$ and R_g^{\star} denote the pull-back of the right shift $R_g: E \to E$.

Definition 2.2. A connection one-form ω on (E, B, ρ) is a $i\mathbb{R}^{n-1}$ -valued one-form on E such that $\omega(A^{\#}) = A$ and $R_{\sigma}^{\star}(\omega) = \omega$.

Remark 2.3. In our setting both *E* and *B* are compact manifolds. Hence a connection one-form exists. It separates tangent spaces of *E* into *vertical* and *horizontal* subspaces.

Let $\{U_{\alpha}\}_{\alpha \in I}$ be a trivialization cover of *B*.

Please cite this article in press as: K. Efstathiou, N. Martynchuk, Monodromy of Hamiltonian systems with complexity 1 torus actions, Journal of Geometry and Physics (2016), http://dx.doi.org/10.1016/j.geomphys.2016.05.014

Download English Version:

https://daneshyari.com/en/article/5500123

Download Persian Version:

https://daneshyari.com/article/5500123

Daneshyari.com