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a b s t r a c t

We consider the monodromy of n-torus bundles in n degree of freedom integrable
Hamiltonian systems with a complexity 1 torus action, that is, a Hamiltonian Tn−1 action.
We show that orbits with T1 isotropy are associated to non-trivial monodromy and we
give a simple formula for computing the monodromy matrix in this case. In the case of 2
degree of freedom systems such orbits correspond to fixed points of the T1 action. Thus we
demonstrate that, given a Tn−1 invariant Hamiltonian H , it is the Tn−1 action, rather than
H , that determines monodromy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The, now classical, work by Duistermaat on obstructions to global action–angle coordinates in integrable Hamiltonian
systems [1] highlighted the importance of the non-triviality of torus bundles over circles for such systems. Since then non-
trivialmonodromyhas beendemonstrated in several integrableHamiltonian systems.We indicativelymention the spherical
pendulum [1,2], the Lagrange top [3], the Hamiltonian Hopf bifurcation [4], the champagne bottle [5], the coupled angular
momenta [6], the two-centers problem [7], and the quadratic spherical pendulum [8,9]. A common aspect of these systems
is the presence of a symmetry given by a Hamiltonian Tn−k action, where n is the number of degrees of freedom (for the
two-centers problem k = 2 and for the other systems k = 1).

Remark 1.1. Hamiltonian Tn−k actions on symplectic 2n manifolds are called complexity k torus actions. Classification of
symplectic manifolds with such actions has been studied by Delzant in [10] (k = 0), and Karshon and Tolman in [11]
(k = 1). We note that for integrable systems with a complexity 0 torus action monodromy is always trivial.

In the present paper we consider integrable n degree of freedom systems with a complexity 1 torus action, that is, a
Hamiltonian Tn−1 action. Monodromy in such systems (along a given curve) is determined by n−1 free integer parameters.
We will show that these parameters are related to singular orbits of the Tn−1 action via the curvature form of an appropriate
principal Tn−1 bundle; see Theorems 3.2 and 3.4. Surprisingly, this relation has not been observed before. The usually
adopted approaches to monodromy (see [12–17,2]) do not take into account the differential geometric invariants of the
Hamiltonian Tn−1 symmetry, such as the curvature form and the Chern numbers. Moreover, these approaches are rather
concentrated on the study of thewhole integralmap, that is, theHamiltonian and themomenta that generate theTn−1 action.
Our results in this paper show that the Hamiltonian plays a secondary role to the momenta for determining monodromy.
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Specifically, for 2 degrees of freedom systems monodromy is determined in terms of the fixed points of the Hamiltonian
T1 action; see Theorem 3.10. For n degree of freedom systems monodromy is determined in terms of how the S1 isotropy
group is expressed in a given basis of the Tn−1 action; see Theorem 3.15.

The paper is organized as follows. In Section 2 we specify our setting and recall necessary definitions from the theory of
principal bundles. In Section 3 we formulate our main results that relate monodromy with singularities of the Tn−1 action;
see Theorems 3.2, 3.4, 3.10 and 3.15. The proof of Theorem3.2,which ismore technical, is postponed to Section 5. In Section 4
we apply our techniques to various integrable systems. The paper is concluded in Section 6 with a discussion.

2. Preliminaries

LetM be a connected 2n-dimensional manifold with a symplectic form Ω . Since Ω is a non-degenerate 2-form, to every
smooth function F1 : M → R one can associate the so-calledHamiltonian vector field XF1 = Ω−1(dF1). Suppose that we have
n almost everywhere independent functions F1, . . . , Fn onM such that all Poisson brackets vanish:

{Fi, Fj} = Ω(XFi , XFj) = 0.

Then we say that we have an integrable Hamiltonian system onM . The map

(F1, . . . , Fn) : M → Rn

is called the integral map of the system. Everywhere in the paper we assume that the Assumption 2.1 hold (except for
Section 5 where we work in a more general setting of a Hamiltonian Tk action, 1 ≤ k ≤ n − 1).

Assumptions 2.1. The integral map F is assumed to have the following properties.

(1) F is proper, that is, for every compact set K ⊂ Rn the preimage F−1(K) is a compact subset ofM .
(2) The integral map F is invariant under a Hamiltonian Tn−1 action.
(3) The Tn−1 action is free on F−1(R), where R ⊂ image(F) the set of regular values of F .

Consider a regular simple closed curve γ ⊂ R and assume that the fibers F−1(ξ), ξ ∈ γ , are connected. By the
Arnol’d–Liouville theorem we have a n-torus bundle

(Eγ = F−1(γ ), γ , F) (1)

with respect to F . Take a fiber F−1(ξ0), ξ0 ∈ γ , and let T n−1 be any orbit of the Hamiltonian Tn−1 action on F−1(ξ0). We
choose a basis (e1, . . . , en) of the integer homology group H1(F−1(ξ0)) so that (e1, . . . , en−1) is a basis of H1(T n−1). Since
the Hamiltonian Tn−1 action is globally defined on Eγ , the generators ej, j = 1, . . . , n − 1, are also ‘globally defined’, that
is they are preserved under the parallel transport along γ . It follows that the monodromy matrix of the bundle (Eγ , γ , F)
with respect to the basis (e1, . . . , en) has the form

1 · · · 0 m1
...

. . .
...

...
0 · · · 1 mn−1
0 · · · 0 1

 .

We call m⃗ = (m1, . . . ,mn−1) ∈ Zn−1 themonodromy vector. In Section 3we relate m⃗ to the curvature form of an appropriate
principal Tn−1 bundle and then give a formula that allows us to compute m⃗ in specific integrable Hamiltonian systems.

The assumption of the existence of a Tn−1 action made throughout this paper brings us in the context of principal torus
bundles and their Chern numbers. We recall here some relevant definitions. For a detailed exposition of the theory we refer
to Postnikov [18].

Consider a principal Tn−1 bundle (E, B, ρ). The structure group Tn−1 is isomorphic to the direct product of n − 1 circles:

Tn−1
= {(eiϕ1 , . . . , eiϕn−1) | ϕj ∈ R} ⊂ Cn−1.

The Lie algebra TeTn−1 can be thus identified with iRn−1. The Lie bracket is identically zero since Tn−1 is a commutative
group.

Let A# denote the fundamental vector field generated by A ∈ iRn−1 and R⋆
g denote the pull-back of the right shift

Rg : E → E.

Definition 2.2. A connection one-form ω on (E, B, ρ) is a iRn−1-valued one-form on E such that ω(A#) = A and R⋆
g(ω) = ω.

Remark 2.3. In our setting both E and B are compact manifolds. Hence a connection one-form exists. It separates tangent
spaces of E into vertical and horizontal subspaces.

Let {Uα}α∈I be a trivialization cover of B.
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