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a b s t r a c t

A detailed construction of the universal integrability objects related to the integrable
systems associated with the quantum loop algebra Uq(L(sl2)) is given. The full proof of the
functional relations in the form independent of the representation of the quantum loop
algebra on the quantum space is presented. The case of the general gradation and general
twisting is treated. The specialization of the universal functional relations to the case when
the quantum space is the state space of a discrete spin chain is described. This is a digression
of the corresponding consideration for the case of the quantum loop algebraUq(L(sl3))with
an extension to the higher spin case.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The modern approach to the study of quantum integrable systems is based on the concept of the transfer matrix, or
transfer operator, and the main problem here is to find its eigenvalues. The most productive method to do this is the Bethe
ansatz [1]. Unfortunately, it does not work for all the cases considered as integrable. More general method was invented by
Baxter, see, for example, [2,3]. He proposed to consider, together with the transfer operator, an auxiliary operator, called the
Q -operator. The transfer operator andQ -operator satisfy somedifference equation called the Baxter’s functional TQ -relation.
Note that in the general case we have a complex consisting of several transfer operators and Q -operators. At present, the
transfer operators and Q -operators are constructed as traces of the corresponding monodromy operators and L-operators.
We call all the operators, mentioned above, the integrability objects.

It was noted by Bazhanov, Lukyanov and Zamolodchikov [4–6] that the integrability objects can be constructed from
the universal R-matrix of the quantum group related to the quantum integrable system under consideration. In fact, in
applications to the theory of quantum integrable systemswedealwith a special type of quantumgroups called quantum loop
algebras. Here the corresponding functional relations follow from the properties of the used representations of the quantum
loop algebra under consideration. The method proved to be efficient for construction of R-operators [7–13], monodromy
operators and L-operators [4–6,12–18], and for the proof of functional relations [6,14,17–20].

The general notion of a quantum group was introduced by Drinfeld and Jimbo [21–23]. Roughly speaking, it is a special
kind of quasitriangular Hopf algebra. The completed tensor product of two copies of a quantum group contains the invertible
element, called the universal R-matrix, which relates its two comultiplications, see, for example [24]. The integrability
objects are determined by a choice of representations for the factors of that tensor product. The choice made for the first
factor determines an integrability object, and for the second factor a concrete integrable model. It is common to call the
representation space of the first factor an auxiliary space, and the representation space of the second one the quantum
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space. However, the roles of the factors can be interchanged. It appeared productive to fix representation only for the first
factor, see, for example [14,15,17,18,25]. We call the arising integrability objects and functional relations universal ones.
The integrability objects and functional relations for a concrete integrable model are obtained from the universal ones by
applying to them the corresponding representation acting on the quantum space.

In this paper we consider quantum integrable systems related to the quantum loop algebra Uq(L(sl2)). For this case the
main tool used to construct the needed representations is the Jimbo’s homomorphism [26]. In the paper [17] the Jimbo’s
homomorphism was defined as a mapping from Uq(L(sl2)) to Uq(sl2). It appears that the formulas become simpler and
the algebraic basis more transparent if one considers the Jimbo’s homomorphism as a mapping from Uq(L(sl2)) to Uq(gl2).
Therefore, we rederive the universal functional relations using the latter form of the Jimbo’s homomorphism. Here we use
a universal approach to TQ - and TT -relations proposed in the paper [18]. We find explicit expressions for the monodromy
operators and L-operators for the spin chains of ‘spin’ 1/2 particles. Then, using the fusion procedure, we construct the
expressions for the ‘spin’ 1 case. The results of the fusion procedure allow us to define integrability objects which are Laurent
polynomials on some power of the spectral parameter. Finally, we specialize the functional relations to the case of spin
chains defined by a choice of arbitrary finite dimensional representation for the quantum space and write them in terms of
polynomial objects.

We think that the main advantage of the undertaken consideration is a possibility, in conjunction with the results of the
paper [18], of a direct conjectural generalization to the case of Uq(L(sln)) for an arbitrary n. Additionally, in comparison with
the paper [17], we pay more attention to the systems of particles of higher ‘spin’. The expressions for the basic monodromy
operator and L-operator for the ‘spin’ 1 case are quite new. Stress that we consider the case of the general gradation and
general twisting.

Depending on the sense of the deformation parameter q, there are at least three definitions of a quantumgroup. According
to the first definition, q = exp h̄, where h̄ is an indeterminate, according to the second one, q is indeterminate, and according
to the third one, q = exp h̄, where h̄ is a complex number. In the first case the quantum group is a C[[h̄]]-algebra, in the
second case aC(q)-algebra, and in the third case it is just a complex algebra. To construct integrability objects one uses trace
operations on the quantum group under consideration. To define traces it seems convenient to use the third definition of
the quantum group. Therefore, we define the quantum group as a C-algebra, see, for example, the books [27,28].

We denote by L(g) the loop Lie algebra of a finite dimensional simple Lie algebra g, by L̃(g) its standard central extension,
and by L̂(g) the Lie algebra L̃(g) endowed with a derivation, see, for example, the book by Kac [29]. We follow the notations
introduced by Kac. Note that nowadays the symbol L̂ is often used instead of L̃ and vice versa.

The symbol Nmeans the set of natural numbers and the symbol Z+ the set of non-negative integers.
Depending on the context, the symbol ‘1’ means the integer one, the unit of an algebra, or the unit matrix. The symbol

⊗ denotes the tensor product of vector spaces and algebras and the Kronecker product of matrices with commuting or
noncommuting entries.

Below we use the notation

κq = q − q−1,

so that the definition of the q-deformed number can be written as

[ν]q =
qν − q−ν

q − q−1 = κ−1
q (qν − q−ν), ν ∈ C.

To construct integrability objects one uses spectral parameters. They are introduced by defining a Z-gradation of the
quantum loop algebra under consideration. In the case of the loop algebra Uq(L(sl2)) considered in this paper, a Z-gradation
is determined by two integers s0, s1. We often use the notation s = s0 + s1.

2. Integrability objects

2.1. Quantum group Uq(gl2)

To construct integrability objects one uses appropriate representations of the quantum loop algebra under consideration.
For the case of the quantum loop algebra Uq(L(sl2)) the most important way to obtain such representations is to use the
Jimbo’s homomorphism from Uq(L(sl2)) to the quantum group Uq(gl2). Therefore, we first remind the definition of Uq(gl2)
and discuss its representations, and then proceed to Uq(L(sl2)).

2.1.1. Definition
Denote by g the standard Cartan subalgebra of the Lie algebra gl2 and by Gi = Eii, i = 1, 2, the elements forming the

standard basis of g.2 The root system of gl2 relative to g consists of two roots α and −α where α is defined as

α(G1) = 1, α(G2) = −1. (2.1)

2 We use the usual notation Eij for the matrix units.
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