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a b s t r a c t

We introduce a new class of noncommutative spectral triples on Kellendonk’s C∗-algebra
associated with a nonperiodic substitution tiling. These spectral triples are constructed
from fractal trees on tilings, which define a geodesic distance between any two tiles in
the tiling. Since fractals typically have infinite Euclidean length, the geodesic distance is
defined using Perron–Frobenius theory, and is self-similar with scaling factor given by
the Perron–Frobenius eigenvalue. We show that each spectral triple is θ-summable, and
respects the hierarchy of the substitution system. To elucidate our results, we construct a
fractal tree on the Penrose tiling, and explicitly show how it gives rise to a collection of
spectral triples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A tiling of the plane is a covering of R2 by a collection of compact subsets, called tiles, for which two distinct tiles can
only meet along their boundaries. The building blocks of a tiling are the prototiles: a finite set of tiles with the property that
every other tile is a translation of some prototile. A tiling is said to be nonperiodic if it lacks any translational periodicity.
One method of producing tilings is via a substitution rule; a rule that expands each tile, and breaks it into smaller pieces,
each of which is an isometric copy of an original tile. A nonperiodic substitution rule gives rise to a dynamical system, called
the continuous hull, that consists of all tilings whose local patterns appear in some finite substitution of a prototile. The
continuous hull becomes a dynamical system where the homeomorphism is induced by translation. In order to associate a
particularly tractable C∗-algebra to a nonperiodic tiling, Kellendonk [1,2] places punctures in each tile, which he then uses
to define a discrete subset of the continuous hull, which we refer to as the discrete hull.

In this paper, we define spectral triples on Kellendonk’s C∗-algebra Apunc associated to a tiling. The fundamental
new ingredients for these spectral triples, are the recently developed fractal dual substitution tilings [3]. Suppose T is a
nonperiodic substitution tiling with finite prototile set P . For each prototile p ∈ P , a fractal dual tiling defines a fractal tree,
in fact infinitely many, on a self-similar tiling Tp; a tiling constructed from the substitution rule on p. Each of our fractal trees
defines a unique fractal path between the punctures of any two tiles in Tp. Moreover, each fractal tree on Tp respects the
hierarchy of the substitution rule. Given a fractal tree on Tp, we apply Perron–Frobenius theory to the substitution matrix
associated to the edges of the fractal dual tiling, to define a length function on each fractal edge in the fractal tree. This extends
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to a self-similar length function on the entire fractal tree, with scaling factor given by the Perron–Frobenius eigenvalue κ . If
λ is the scaling factor for the original tiling, the scaling factor κ of the fractal tree, is related to the Hausdorff dimension h of
the fractal dual tiling by the formula h =

ln κ
ln λ . The fractal tree is then used to define a length function between any two tiles

of Tp using Perron–Frobenius theory. Let dFp(t, t
′) denote the fractal length between the punctures of two tiles t and t ′ in Tp.

To each substitution tiling with a fractal dual tiling, we construct spectral triples on Kellendonk’s C∗-algebra Apunc , which
we now outline. For each p ∈ P , let Hp := ℓ2(Tp \ {p}), with canonical basis {δt : t ∈ Tp \ {p}}, and define an unbounded
multiplication operator Dpδt := ln(dFp(t, p))δt . We show that (Apunc,Hp,Dp) is a θ-summable (positive) spectral triple. Let
H := ⊕p∈P Hp. For each function σ : P → {−1, 1}, we define an unbounded multiplication operator Dσ := ⊕p∈P σ(p)Dp.
Then, (Apunc,H,Dσ ) is also a θ-summable spectral triple. This defines a collection of spectral triples on Kellendonk’s algebra
Apunc that each respect the hierarchy of the substitution rule.

Using operator algebras as the basic framework, Alain Connes developed noncommutative geometry [4], and has shown
its significance to many fields of mathematics. In particular, one of the overarching themes of noncommutative geometry
is to describe a consistent mathematical model for quantum physics. Dynamical systems are particularly well suited to
the tools of noncommutative geometry, and provide dynamical invariants in a noncommutative framework. Of particular
importance to Connes’ program are spectral triples, which typically define a noncommutative Riemannian metric on a C∗-
algebra. A spectral triple (A,H,D) consists of a C∗-algebra A faithfully represented on a separable Hilbert space H , and a
self-adjoint unbounded operator D on H with compact resolvent, whose commutators with a dense ∗-subalgebra of A are
bounded.

The noncommutative topology of tilings has a long history. Alain Connes initiated the study of substitution tilings in
a noncommutative framework by giving a detailed description of a C∗-algebra associated with the Penrose tiling in his
seminal book [4]. In 1982, Dan Shechtman discovered quasicrystals [5], a type of material that is neither crystalline nor
amorphous. Themathematical theory explaining Shechtman’s discovery had already been developed in the context of purely
mathematical research; nonperiodic tilings provide an excellent model for quasicrystals. In an attempt to understand the
physics of quasicrystals, Bellissard defined a crossed product C∗-algebra by a family of Schrödinger operators [6,7]. Years
later, Kellendonk defined a discrete version of the continuous hull and constructed a groupoid C∗-algebra associated with a
tiling [1,8]. Soon afterwards, Anderson and Putnam [9] showed that the continuous hullΩ of a tiling is a Smale space, and
used this observation to describe the K -theory of the crossed product C(Ω)o Rd. More recently, Kellendonk’s construction
was generalised to tilings with infinite rotational symmetry in [10], and the rotationally equivariant K -theory of these
algebras was completely worked out in [11].

Only recently has there been a breakthrough in the noncommutative geometry of tilings. The primary interest in spectral
triples on tilings is that the continuous hull of a nonperiodic tiling is not only a topological object, it also has rich geometric
structure. The groundbreaking spectral triple for tilings appeared in John Pearson’s 2008 thesis [12], and the subsequent
joint paper with Bellissard [13]. These spectral triples were defined on the commutative C∗-algebra associated with the hull
of a tiling. A few years later, the second author constructed spectral triples on the unstable C∗-algebra of a Smale space [14,
15], which is strongly Morita equivalent to Kellendonk’s algebra. However, in the special case of substitution tiling alge-
bras, this spectral triple essentially measured the Euclidean distance between two tilings in the groupoid used to define the
C∗-algebra, and ignored the substitution rule. Since Bellissard and Pearson’s seminal result there have been a number of
papers on spectral triples of tilings, see for example [16–20]. The survey article [21] explains these constructions and their
relationship to one another.

2. Nonperiodic tilings and their properties

The tilings in this paper are built from prototiles, a finite collection P of labelled compact subsets of R2 that each contain
the origin, and are equal to the closure of their interior. We denote the label of a prototile p ∈ P by ℓ(p), the support of p by
supp(p) ⊂ R2, and the boundary of p by ∂ supp(p). In general, given a subset X ⊂ R2, we write ∂X for the boundary of X .
The labels allow us to have two distinct prototiles with the same support, and we often denote the labels by colours. A tile
is defined to be any translation of a prototile. So, for any p ∈ P and x ∈ R2, the labelled subset t := p + x is a tile with label
ℓ(t) := ℓ(p), and support supp(t) := supp(p)+ x.

Definition 2.1. LetP be a set of prototiles. A tiling of the plane is a countable collection T of tiles, each of which is a translate
of some prototile p ∈ P , such that
(1) ∪t∈T supp(t) = R2; and
(2) int(supp(t)) ∩ int(supp(t ′)) = ∅ whenever t ≠ t ′.
A tiling T is said to be edge-to-edge if whenever two tiles intersect, they meet full edge to full edge, or at a common vertex
(see [3, Section 3.2] for the definition of an edge in the case that the tiling does not have polygonal prototiles). If tiles in an
edge-to-edge tiling T only intersect along at most one edge, then T is said to be singly edge-to-edge. A patch P ⊂ T is a finite
collection of tiles in T such that the interior of the support of P is connected.

For x ∈ R2 and r > 0, let B(x, r) denote the ball of radius r centred at x. Given a tiling T , we require the following
collections of tiles. For x ∈ R2 and r > 0, let

T ⊓ B(x, r) := {t ∈ T : t ⊂ B(x, r)}.
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