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1. Introduction

A tiling of the plane is a covering of R? by a collection of compact subsets, called tiles, for which two distinct tiles can
only meet along their boundaries. The building blocks of a tiling are the prototiles: a finite set of tiles with the property that
every other tile is a translation of some prototile. A tiling is said to be nonperiodic if it lacks any translational periodicity.
One method of producing tilings is via a substitution rule; a rule that expands each tile, and breaks it into smaller pieces,
each of which is an isometric copy of an original tile. A nonperiodic substitution rule gives rise to a dynamical system, called
the continuous hull, that consists of all tilings whose local patterns appear in some finite substitution of a prototile. The
continuous hull becomes a dynamical system where the homeomorphism is induced by translation. In order to associate a
particularly tractable C*-algebra to a nonperiodic tiling, Kellendonk [1,2] places punctures in each tile, which he then uses
to define a discrete subset of the continuous hull, which we refer to as the discrete hull.

In this paper, we define spectral triples on Kellendonk’s C*-algebra Apu,c associated to a tiling. The fundamental
new ingredients for these spectral triples, are the recently developed fractal dual substitution tilings [3]. Suppose T is a
nonperiodic substitution tiling with finite prototile set &. For each prototile p € £, a fractal dual tiling defines a fractal tree,
in fact infinitely many, on a self-similar tiling T}; a tiling constructed from the substitution rule on p. Each of our fractal trees
defines a unique fractal path between the punctures of any two tiles in T,. Moreover, each fractal tree on T, respects the
hierarchy of the substitution rule. Given a fractal tree on T,, we apply Perron-Frobenius theory to the substitution matrix
associated to the edges of the fractal dual tiling, to define a length function on each fractal edge in the fractal tree. This extends
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to a self-similar length function on the entire fractal tree, with scaling factor given by the Perron-Frobenius eigenvalue «. If
A is the scaling factor for the original tiling, the scaling factor « of the fractal tree, is related to the Hausdorff dimension h of
the fractal dual tiling by the formula h = :2’; . The fractal tree is then used to define a length function between any two tiles
of T, using Perron-Frobenius theory. Let dg, (¢, t) denote the fractal length between the punctures of two tiles t and t' in T;,.

To each substitution tiling with a fractal dual tiling, we construct spectral triples on Kellendonk’s C*-algebra A,y,c, which
we now outline. For eachp € 2,letH, := KZ(Tp \ {p}), with canonical basis {§; : t € T, \ {p}}, and define an unbounded
multiplication operator D,é; := ln(dgp(t, P))3:. We show that (Apunc, Hp, Dp) is a -summable (positive) spectral triple. Let
H := ®pec» H,. For each function o : » — {—1, 1}, we define an unbounded multiplication operator D, := ®pec» 0 (p)Dp.
Then, (Apunc, H, D) is also a -summable spectral triple. This defines a collection of spectral triples on Kellendonk’s algebra
Apunc that each respect the hierarchy of the substitution rule.

Using operator algebras as the basic framework, Alain Connes developed noncommutative geometry [4], and has shown
its significance to many fields of mathematics. In particular, one of the overarching themes of noncommutative geometry
is to describe a consistent mathematical model for quantum physics. Dynamical systems are particularly well suited to
the tools of noncommutative geometry, and provide dynamical invariants in a noncommutative framework. Of particular
importance to Connes’ program are spectral triples, which typically define a noncommutative Riemannian metric on a C*-
algebra. A spectral triple (A, H, D) consists of a C*-algebra A faithfully represented on a separable Hilbert space H, and a
self-adjoint unbounded operator D on H with compact resolvent, whose commutators with a dense *-subalgebra of A are
bounded.

The noncommutative topology of tilings has a long history. Alain Connes initiated the study of substitution tilings in
a noncommutative framework by giving a detailed description of a C*-algebra associated with the Penrose tiling in his
seminal book [4]. In 1982, Dan Shechtman discovered quasicrystals [5], a type of material that is neither crystalline nor
amorphous. The mathematical theory explaining Shechtman’s discovery had already been developed in the context of purely
mathematical research; nonperiodic tilings provide an excellent model for quasicrystals. In an attempt to understand the
physics of quasicrystals, Bellissard defined a crossed product C*-algebra by a family of Schrodinger operators [6,7]. Years
later, Kellendonk defined a discrete version of the continuous hull and constructed a groupoid C*-algebra associated with a
tiling [1,8]. Soon afterwards, Anderson and Putnam [9] showed that the continuous hull £2 of a tiling is a Smale space, and
used this observation to describe the K-theory of the crossed product C(£2) x R?. More recently, Kellendonk’s construction
was generalised to tilings with infinite rotational symmetry in [10], and the rotationally equivariant K-theory of these
algebras was completely worked out in [11].

Only recently has there been a breakthrough in the noncommutative geometry of tilings. The primary interest in spectral
triples on tilings is that the continuous hull of a nonperiodic tiling is not only a topological object, it also has rich geometric
structure. The groundbreaking spectral triple for tilings appeared in John Pearson’s 2008 thesis [12], and the subsequent
joint paper with Bellissard [ 13]. These spectral triples were defined on the commutative C*-algebra associated with the hull
of a tiling. A few years later, the second author constructed spectral triples on the unstable C*-algebra of a Smale space [ 14,
15], which is strongly Morita equivalent to Kellendonk’s algebra. However, in the special case of substitution tiling alge-
bras, this spectral triple essentially measured the Euclidean distance between two tilings in the groupoid used to define the
C*-algebra, and ignored the substitution rule. Since Bellissard and Pearson’s seminal result there have been a number of
papers on spectral triples of tilings, see for example [16-20]. The survey article [21] explains these constructions and their
relationship to one another.

2. Nonperiodic tilings and their properties

The tilings in this paper are built from prototiles, a finite collection & of labelled compact subsets of R? that each contain
the origin, and are equal to the closure of their interior. We denote the label of a prototile p € & by £(p), the support of p by
supp(p) C R?, and the boundary of p by 8 supp(p). In general, given a subset X C R?, we write 89X for the boundary of X.
The labels allow us to have two distinct prototiles with the same support, and we often denote the labels by colours. A tile
is defined to be any translation of a prototile. So, for any p € # and x € R?, the labelled subset t := p + x is a tile with label
£(t) := £(p), and support supp(t) := supp(p) + x.

Definition 2.1. Let  be a set of prototiles. A tiling of the plane is a countable collection T of tiles, each of which is a translate
of some prototile p € &, such that

(1) Uger supp(t) = R?; and

(2) int(supp(t)) N int(supp(t’)) = @ whenevert # t'.

A tiling T is said to be edge-to-edge if whenever two tiles intersect, they meet full edge to full edge, or at a common vertex
(see [3, Section 3.2] for the definition of an edge in the case that the tiling does not have polygonal prototiles). If tiles in an
edge-to-edge tiling T only intersect along at most one edge, then T is said to be singly edge-to-edge. A patch P C T is a finite
collection of tiles in T such that the interior of the support of P is connected.

Forx € R?>andr > 0, let B(x, r) denote the ball of radius r centred at x. Given a tiling T, we require the following
collections of tiles. For x € R? and r > 0, let

TNBx,r):={teT:tCBx,r)}
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