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a b s t r a c t

We consider invertible linear ordinary differential operators whose inversions are also
differential operators. To each such operator we assign a numerical table. These tables are
described in the elementary geometrical language. The table does not uniquely determine
the operator. To define this operator uniquely some additional information should be
added, as it is described in detail in this paper. The possibility of generalization of these
results to partial differential operators is also discussed.
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1. Introduction

We describe invertible linear differential operators whose inversions are also linear differential operators. There are
many various applications of such operators [1, § 2.3]. Transformations and classification of systems of differential equations
(or, more generally, differential objects) are among them. Classical transformations of systems of differential equations are
invertible changes of dependent and independent variables of the systems. They are referred to as Lie transformations
[2, Chap. 4]. Their theory has been developed quite completely. However, there are invertible transformations such
that the variables of one system depend both on the variables of the other system and on derivatives of dependent
variables with respect to independent ones. Such transformations are called C-transformations [2, Chap. 6] or Lie–Backlund
transformations [3]. In particular, invertible nonlinear differential operators may be understood as C-transformations
[2, item 6.3.8]. In the case of a single dependent variable, any C-transformation is a Lie transformation. However, this
fails in the case of several independent variables. Moreover, in this case, there are much more C-transformations than Lie
transformations.

To use C-transformations it is necessary to have their convenient description. A C-transformation of linear systems is
an invertible linear differential operator. In the case of nonlinear systems, the linearization of a C-transformation can be
interpreted as an invertible linear differential operator [4]. Therefore, the study of invertible linear differential operators
should be understood as the first step to the description of C-transformations of both linear and nonlinear systems.

The problem of describing C-transformations has become especially important during the last 20 years in connection
with the development of the theory of flat control systems. Flat systems are defined as systems equivalent to linear
controllable systemswith respect to the group ofC-transformations (see [5]). Controlmethods developed for linear systems
are generalized to flat systems. Numerous papers (see the bibliography in [6]) show that such systems describe various
natural phenomena and processes. Therefore, the characterization of flat systems is of a considerable interest.
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Invertible linear differential operators with one independent variable are used to characterize flat systems in [7–9]. This
approach is related to the deformation theory of pseudogroup structures [10,11]. This relationship is investigated in [4]. As
a result, the deformation theory is generalized to the case of infinite-dimensional manifolds. Vector fields whose local flows
consist of C-transformations are studied in [12]. Invertible linear differential operators with two independent variables
are described in [13]. In particular it is proved that any two-sided invertible operator can be written as a composition of
triangular invertible operators in some stable sense.

In this paper we describe invertible linear differential operators with one independent variable. Our approach is similar
to the approach in [14] and is based on assigning a numerical table to each invertible operator. These tables are further
described using an elementary geometrical language. Thus, to each invertible operator one assigns an elementary geometric
model, which is referred to as a d-scheme.

An invertible linear differential operator is not uniquely determined by its d-scheme. Below we show how to construct
an invertible differential operator for a given d-scheme andwhat structures should be still given for constructing. The proofs
of the main results rely on a description of d-schemes in the language of spectral sequences.

This paper is organized as follows. In Section 1, we define invertible linear differential operators with one independent
variable and present their examples.We state elementary geometric models of such operators in Section 2. Themain results
of the present paper are given in Section 3, and their proof is contained in Section 4. Corollaries and generalizations of these
results are discussed at the end of the paper.

2. Invertible linear differential operators

Let M be a one-dimensional manifold, let A = C∞(M) be the R-algebra of smooth functions on M , and let P and Q be
modules of smooth sections of some vector bundles ξ and ζ overM.

Recall that if t is a coordinate on M and p1, . . . , pm are coordinates in fibers of the vector bundle ξ , then any section of
ξ may be represented as a column of functions p(t) = (p1(t), . . . , pm(t))T . Similar representation exists for sections of ζ .
Denote by q1, . . . , qm0 coordinates in fibers of ζ .

Let k be some nonnegative integer. A map ∆ of P in Q is called a linear differential operator of order ≤ k (or simply a
differential operator) if in coordinates,

∆

p(t)


= (q1(t), . . . , qm0(t))

T , qj(t) =

m
i=1

k
l=0

ajil(t)
dlpi(t)
dt l

, ajil ∈ A, (1)

where m and m0 are the dimensions of ξ and ζ respectively. This definition is a coordinate version of a definition from
[15, Chap. 9, § 2]. The algebraic definition of differential operators can be found in [2, item 0.2.2]. For our purposes, it is more
convenient to use the coordinate definition.

Denote by ord∆ the order of a linear differential operator ∆, i.e., k = ord∆ iff ∆ is an operator of order ≤ k but is not
an operator of order ≤ k − 1.

The set of all linear differential operators of order ≤ k acting from P into Q is an A-module under the multiplication
(a+∆)(p) = ∆(ap), p ∈ P . Denote by Diff+k (P ,Q) this module. The map ∆ → ∆(1) establishes an isomorphism of the
module Diff+0 (A,Q) to the module Q. Besides, from the definition it follows that Diff+k (P ,Q) ⊂ Diff+k+1(P ,Q) for any
k ≥ 0. The set Diff+

∗
(P ,Q) = ∪

∞

k=0 Diff
+

k (P ,Q) is an A-module of infinite dimension.
A linear differential operator ofP = A toQ = A is called scalar. Since composition of scalar linear differential operators

is a scalar linear differential operator again, the set Diff+
∗
(A,A) is a noncommutative ring.

A linear differential operator ∆ : P → Q is called (two-sided) invertible if there exists a linear differential operator
∆−1

: Q → P such that the composition ∆−1
◦ ∆ is the identity mapping of the module P and the composition ∆ ◦ ∆−1

is the identity mapping of the module Q. In this case, the operator∆−1 is called the inversion of∆.
It is convenient to represent elements of P ,Q as columns of functions, and a linear differential operator∆ : P → Q as a

matrix of scalar operators. It can be proved that any invertible linear differential operator is represented by a square matrix.
In the following two examples, a, b, c, d are arbitrary scalar linear differential operators.

Example 1. In the casem = 3, the linear differential operators∆ and∆−1 determined by the matrices

∆ =

 1 −a 0
−c ca + 1 −b
dc −dca − d db + 1


, ∆−1

=

ac + 1 abd + a ab
c bd + 1 b
0 d 1


are inverse. This can be proved by matrix multiplication.

Example 2. In the case m = 2, the operators∆ and∆−1 determined by the matrices

∆ =


1 + bc −b

−a − c − abc 1 + ab


, ∆−1

=


1 + ba b

a + c + cba 1 + cb


are also inverse.
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