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a b s t r a c t

For the KdV–Burgers equation on a finite interval the development of a regular profile
starting from a constant one under a periodic perturbation on the boundary is studied. The
equation describes a medium which is both dissipative and dispersive. For an appropriate
combination of dispersion and dissipation the asymptotic profile looks like a periodical
chain of shock fronts with a decreasing amplitude (similarly to the Burgers equation case).
But due to dispersion each such front is followed by increasing oscillation leading to
the next shock—like the ninth wave in rough seas. The development of such a profile is
preceded by an initial shock of a constant height.

© 2016 Published by Elsevier B.V.

1. Introduction

The Kortveg–de Vries–Burgers equation

ut(x, t) = ε2uxx(x, t) − 2u(x, t)ux(x, t) + λuxxx(x, t) (1)

is related to the viscous and dispersive medium. The viscosity dampens oscillations (which are inherent to the dispersion)
except for stationary solutions which are invariant for some subalgebra of the full symmetry algebra of the equation. On
the whole line only bounded solutions are usually taken into account since only they have a physical meaning. It is not the
case for a finite interval as an unbounded solution may still remain bounded within an interval. Thus we obtain some new
effects.

We consider the initial value–boundary problem (IVBP) for the KdV–Burgers equation on a finite interval:

u(x, 0) = f (x), u(a, t) = l(t), ux(a, t) = L(t), ux(b, t) = R(t), x ∈ [a, b]. (2)

The case of the boundary conditions u(a, t) = B+A sin(ωt), ux(b, t) = 0 and related asymptotics are of a special interest
here.

Some of our results are similar to those of [1] and Dubrovin et al. [2,3] that deals with a formation of dispersive shocks
in a class of Hamiltonian dispersive regularizations of the quasi-linear transport equation. For the KdV–Burgers equation
the shocks resulting in breaks (and preceded by a multi-oscillation) develop for some IVBPs; some other IVBPs lead to a
monotonic convergence to an invariant solutions. Onemore possibility for the asymptotics is a class of periodic ‘ninth-wave’
profile solutions. Such profiles (though for traveling waves on a line) are known in nonlinear acoustics [4,5]; they form in
media where nonlinearity dominates over dispersion, diffraction and absorption. The present paper is a continuation of our
previous work [6].
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2. Traveling wave solutions

The KdV–Burgers equation (1) has three classical symmetries:

1. ut—t-translation;
2. ux—x-translation;
3. 1/2 − tux—the Galilean symmetry.

It is convenient to interpret them as the flows commuting with one generated by (1). Thus if u0(x, t) is a solution to (1)
and S is a symmetry then the solution of the problem

uτ = S, u|τ=0 = u0

is also a solution to (1). This is the so called process of generation solutions by a symmetry. In this way

1. t-translation generates u0(x, t + τ);

2. x-translation generates u0(x + τ , t);
3. the Galilean symmetry generates u0(x − τ t, t) +

τ
2 .

A traveling wave solution is of the form u = u(x− Vt). It can be generated from a solution to (1) of the form u = y(x) by
the Galilean symmetry at τ = V .

Hence to obtain the travelingwave solution to theKortveg–deVries–Burgers equationwe startwith its time-independent
solutions. They satisfy the ordinary differential equation

λy′′′
+ ε2y′′

− 2yy′
= 0, y′

=
dy
dx

,

whose order may be reduced:

λy′′
+ ε2y′

− y2 + C = 0. (3)

Since this equation is autonomous, its order may be reduced still further. Put y′
= p(y), then y′′

= p(y) d
dyp(y) = pp′; it

follows

λpp′
+ ε2p = y2 − C = 0. (4)

Changing variables p = −q/ε2, y = z · λ/ε4 we obtain

qq′
− q =

λ2

ε8
z2 − C .

The latter equation is a particular case of the well studied second kind Abel equation qq′
− q = g(z). For a special case

g(z) = Az2 − 9/(625A) its general solution may be given in an implicit (parametric) form, [7], in terms the classical
Weierstrass’s elliptic function P :

z = 5a


τP ∓
1
2


, z = aτ 2(τ


±(4P 3 − 1) + 2P ), A = ±

2
125

a−1.

Here τ is a parameter,

τ =


dP

±(4P 3 − 1)
− C2, P = P (τ + C2, 0, 1).

Happily, few explicit solutionsmay be found. The formula g(z) = Az2 −9/(625A) = (25Az−3)(25Az+3)/(625A) prompts
still another change of variables: s =

√
25Az ± 3, R = 25Aq. The equation now reads

RRs − 2sR =
2
25

(s5 ∓ 6s3),

and one can easily find its polynomial solutions:

R(s) = ±

√
6

15
s3 +

2
5
s2. (5)

Returning these solutions to the initial variables and in the case A = λ2/ε8 we obtain

y(x) =
3ε4 tanh2( ε2x

10λ )

50λ
−

3ε4 tanh( ε2x
10λ )

25λ
−

3ε4

50λ
. (6)
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