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a b s t r a c t

This paper presents a simple account of the algebraic classification of the Weyl conformal
tensor on a 4-dimensional manifold with metric g of neutral signature (+, +, −, −). The
classification is algebraically similar to the well-known Petrov classification in the Lorentz
case and the various algebraic types and corresponding canonical forms are obtained.
Criteria concerning principal, totally null 2-spaces are explored andwhich lead to principal
null directions similar to those of L. Bel in the Lorentz case. The uniqueness, or otherwise,
of the tetrads in which the canonical forms appear are investigated and some topological
and differentiability properties of the algebraic types are also established.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to present a classification of the Weyl conformal tensor C on a 4-dimensional smooth manifold
admitting a smooth metric g of neutral signature (+, +, −, −). After the work was completed the author’s attention was
drawn to the papers of Law [1,2], Batista [3] and Ortaggio [4] in which some of the algebraic results presented here at
the beginning of Section 3 are given (and mostly in spinor language in [1,2]). Another approach to this problem has been
discussed in [5]. However, it is believed that the methods adopted in this paper, which use a standard tensor approach, are
simpler, sharper structured and more amenable and convenient for differential geometers and for purposes of calculation.
They lead to a full classification of C . Further, the idea of a principal, totally null 2-space is introduced for the self dual and
anti-self dual parts of C and shown to lead directly to the concepts of repeated and non-repeated principal null directions for
the full tensor C , the equivalents ofwhich have been rather useful in the Lorentz case for general relativity theory. In addition,
the (possible) lack of uniqueness (up to reflections, etc.) of the canonical tetrad in which each type for C is expressed is given
in full. Some topological and differentiability properties of the classification are also derived.

To establish notation, M denotes a 4-dimensional, smooth manifold with smooth metric g of neutral signature (+, +,
−, −) and, collectively, these are labelled (M, g). The tangent space at m ∈ M is denoted by TmM and the vector space of
2-forms (usually referred to as bivectors) at m by ΛmM . Due to the existence of the metric (and where no confusion could
arise) the distinction between the tangent and cotangent spaces will sometimes be ignored as will the index placing on
bivectors. The symbol u.v denotes the inner product at m, g(m)(u, v), of u, v ∈ TmM . A non-zero member u ∈ TmM is called
spacelike if u.u > 0, timelike if u.u < 0 and null if u.u = 0. The symbol ∗ denotes the usual Hodge duality (linear) operator
(on ΛmM) and square brackets round indices denote the usual anti-symmetrisation of the indices enclosed. Since g has
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neutral signature one may choose a pseudo-orthonormal basis x, y, s, t at m ∈ M with x.x = y.y = −s.s = −t.t = 1
and an associated null basis of (null) vectors l, n, L,N at m given by

√
2l = x + t ,

√
2n = x − t ,

√
2L = y + s and√

2N = y − s so that l.n = L.N = 1 and all other such inner products are zero. The associated completeness relations are
gab = xaxb + yayb − sasb − tatb = lanb + nalb + LaNb +NaLb. A 2-dimensional subspace (2-space) V of TmM is called spacelike
if each non-zero member of V is spacelike, or each non-zero member of V is timelike, timelike if V contains exactly two, null
1-dimensional subspaces (directions), null if V contains exactly one null direction and totally null if each non-zero member
of V is null. Thus a totally null 2-space consists, apart from the zero vector, of null vectors any two of which are orthogonal.
This list is mutually exclusive and exhaustive. A bivector E at m with components Eab(= − Eba) necessarily has even matrix
rank. If this rank is 2, E is called simple and if 4, it is called non-simple. If E is simple it may be written Eab

= uavb
− vaub for

u, v ∈ TmM and the 2-space spanned by u and v is uniquely determined by E and called the blade of E (and then, unless more
precision is required, E or its blade is written u∧ v). A simple bivector is called spacelike (respectively, timelike, null or totally
null) if its blade is spacelike (respectively, timelike, null or totally null). The set ΛmM admits a (bivector) metric denoted by
P so that for E, E ′

∈ ΛmM , P(E, E ′) ≡ PabcdEabE ′cd
= EabE ′

ab where Pabcd =
1
2 (gacgbd − gadgbc). Sometimes one writes |E| for

P(E, E). It is easily checked that, as a consequence of the neutral signature of g , the signature of P is (+, +, −, −, −, −).

For each E ∈ ΛmM its dual is defined by
∗

Eab =
1
2ϵabcdE

cd where ϵabcd ≡
√
detgδabcd with δ denoting the usual alternating

symbol and detg the determinant of g . For neutral signature
∗∗

E = E and so the only eigenvalues of the linear map ∗ are ±1.

Now define the subspaces
+

Sm ≡ {E ∈ ΛmM :
∗

E = E} and
−

Sm ≡ {E ∈ ΛmM :
∗

E = −E} and also the subset S̃m ≡
+

Sm ∪
−

Sm,

of ΛmM . Then
+

Sm ∩
−

Sm = {0} and E ∈ ΛmM\̃Sm if and only if E and
∗

E are independent members of ΛmM . If E and E ′ are

independent and totally null and both are in
+

Sm or both are in
−

Sm their blades intersect in only the zero vector whereas if

E ∈
+

Sm and E ′
∈

−

Sm their blades intersect in a unique null direction. It follows that if k ∈ TmM is null there are exactly two

totally null 2-spaces containing k, one in
+

Sm and one in
−

Sm. Any E ∈ ΛmM may be written in exactly one way as E =
+

E +
−

E

with
+

E ∈
+

Sm and
−

E ∈
−

Sm and so one has ΛmM =
+

Sm ⊕
−

Sm. It follows that if E is a null bivector its unique decomposition

E =
+

E +
−

E gives rise to unique totally null members
+

E and
−

E whose unique common null direction equals that of E and

conversely the sum of any pair of totally null bivectors
+

E ∈
+

Sm and
−

E ∈
−

Sm gives a null bivector whose unique null direction

equals the intersection of the blades of
+

E and
−

E . Also if
+

E ∈
+

Sm and
−

E ∈
−

Sm, one has P(
+

E,
−

E) = 0 and [
+

E,
−

E] = 0 where [ ]

denotes matrix commutation. Now each of
+

Sm and
−

Sm is Lie isomorphic to the Lie algebra o(1, 2) under [ ] and soΛmM is the

Lie algebra product
+

Sm ⊕
−

Sm. Clearly E ∈ ΛmM is simple if and only if
∗

E is. It is sometimes useful to note that for a general

non-zero member E ∈ ΛmM the statements that (i) E is simple, (ii) Eab
∗

Ebc
= 0 and (iii) Eab

∗

Eab
= 0 are equivalent. It can also

be checked that for E ∈ S̃m, the statements that |E| = 0, that E is simple and that E is totally null are equivalent. A bivector
E not in S̃m is null if and only if it is simple with a null vector l in its blade satisfying Eablb = 0. More details on some of these
matters may be found in [6–10].

2. The classification of the Weyl tensor I

TheWeyl conformal tensor C is a type (1, 3) tensor with components Ca
bcd introduced byWeyl [11] and has the property

that any two conformally related metrics onM have the sameWeyl conformal tensor independently ofM and of the metric
signature provided that dimM ≥ 3. Then C leads to a related type (0, 4) tensor (also denoted by C) with components
Cabcd ≡ gaeC e

bcd and the skew-symmetry of this latter tensor in its first and last pairs of indices leads to the possibility
of left and right duals for C , one for each such pair. The fact that C also satisfies the trace-free condition C c

acb ≡ 0 means
that the convenient relationship ∗C∗

= C or, equivalently, ∗C = C∗ is satisfied (see, e.g. [12]). The tensor C also satisfies
Ca[bcd] = 0 which is equivalent to ∗C being tracefree, ∗C c

acb = 0, and since C is tracefree, ∗Ca[bcd] = 0. Now consider the
linear map f on ΛmM (here called theWeyl map) given by Eab

→ Cab
cdEcd. The above dual relations show that the subspaces

+

Sm and
−

Sm are invariant subspaces for f . Now write the tensor type (0, 4) relation

C =
+

W +
−

W
+

W ≡
1
2
(C +

∗C),
−

W ≡
1
2
(C−

∗C). (1)

Thus the respective self dual and anti-self dual parts of C ,
+

W and
−

W , satisfy
+

W ∗
=

+

W and
−

W ∗
= −

−

W and give rise in

an obvious way to maps
+

f and
−

f constructed from them, as f was from C , such that f =
+

f +
−

f . Thus
+

f :
+

Sm →
+

Sm and
+

f :
−

Sm → {0} and
−

f :
−

Sm →
−

Sm and
−

f :
+

Sm → {0}. The tensors
+

W and
−

W are tracefree, satisfy
+

W a[bcd] =
−

W a[bcd] = 0 and are
uniquely determined by C .

Following a duality convention on the basis (l, n, L,N) for TmM one may select as a basis for
+

Sm the set F ≡ l∧ n− L∧ N ,
G ≡ l ∧ N and H ≡ n ∧ L satisfying the orthogonality relations |F | = −4, |G| = |H| = P(F ,G) = P(F ,H) = 0, P(G,H) = 2.
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