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h i g h l i g h t s

• 2D slow- and center manifolds govern dynamics in Maasch–Saltzman model.
• Bogdanov–Takens singularities organize local and global bifurcations.
• Regions of all stable limit cycles identified.
• Slow passage through Hopf causes delayed stability loss of key equilibrium.
• Delayed stability loss responsible for mid-Pleistocene transition mechanism.
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a b s t r a c t

This article is concerned with the internal dynamics of a conceptual model proposed by Maasch and
Saltzman (1990) to explain central features of the glacial cycles observed in the climate record of the
Pleistocene Epoch. It is shown that, in most parameter regimes, the long-term system dynamics occur
on certain intrinsic two-dimensional invariant manifolds in the three-dimensional state space. These
invariant manifolds are slow manifolds when the characteristic time scales for the total global ice mass
and the volume of the North Atlantic Deep Water are well separated, and they are center manifolds
when these characteristic time scales are comparable. In both cases, the reduced dynamics on these
manifolds are governed by Bogdanov–Takens singularities, and the bifurcation curves associated to these
singularities organize the parameter regions in which the model exhibits glacial cycles. In addition,
knowledge of the reduced systems and their bifurcations is useful for understanding the effects of slowly
varying parameters, which cause passage throughHopf bifurcations, and of orbital (Milankovitch) forcing.
Both are central to the mechanism proposed by Maasch and Saltzman for the mid-Pleistocene transition
in their model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of glacial cycles during the Pleistocene Epoch –
the period from approximately 2.6 million years before present
(2.6Myr BP) until approximately 11.7 thousand years before
present (11.7Kyr BP) – are of great current interest in the geo-
sciences community, see [1], [2, §11] and [3, §12.3]. The geolog-
ical record shows cycles of advancing and retreating continental
glaciers, mostly at high latitudes and high altitudes, and especially
in the Northern Hemisphere. The typical temperature pattern in-
ferred from proxy data resembles that of a sawtooth wave, where
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a slow glaciation is followed by a rapid deglaciation. In the early
Pleistocene (until approximately 1.2Myr BP), the period of a glacial
cycle averaged 40Kyr; after a transition period of approximately
400Kyr, the glacial cycles had a noticeably greater amplitude and
their period averaged 100Kyr. Although the periods appear to cor-
relate to the cycles of the orbital forcing (Milankovitch theory [4]),
the evidence is subject to debate [5, § 11.8], and there is currently
nowidely-accepted explanation for themid-Pleistocene transition,
when the period of the cycles changed from approximately 40Kyr
to 100Kyr. Several models have been proposed to explain the
various observations; see, for example, [6–23]. We refer the reader
to [24] for an overview of these various modeling efforts and to [1]
for a general introduction to paleoclimate modeling. The present
investigation focuses on the internal dynamics of the conceptual
model developed by Maasch and Saltzman [13,20].
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Fig. 1.1. Limit cycle of (1.1) at p = 1.0, q = 1.2, r = 0.8, s = 0.8. The three
curves represent the total ice mass (black), atmospheric CO2 concentration (red),
and volume of NADW (blue).

1.1. The Maasch–Saltzman model

The Maasch and Saltzman (MS) model is based on physical
arguments and emphasizes the role of atmospheric CO2 in the
development and evolution of the glacial cycles. In nondimensional
form, it consists of the following three ordinary differential equa-
tions:
ẋ = −x − y,
ẏ = ry − pz + sz2 − yz2,
ż = −qx − qz.

(1.1)

The state variables x, y, and z represent the anomalies (deviations
from long-term averages) of the total global ice mass, the atmo-
spheric CO2 concentration, and the volume of the North Atlantic
Deep Water (NADW), respectively. The latter is a measure of the
strength of the North Atlantic overturning circulation and thus of
the strength of the oceanic CO2 pump.

The nondimensional parameters p, q, r , and s are each combi-
nations of various physical parameters, and they are all positive.
Here, p and r represent the effective rate constants for how the
CO2 concentration (y) changes as the NADW (z) and CO2 concen-
tration change, respectively. Next, q is the effective ratio of the
characteristic time scales for the total global ice mass (x) and the
volume of NADW; for physical reasons, q > 1 [20]. Then, the
parameter s is a symmetry parameter. With s = 0, the model (1.1)
possesses a reflection symmetry; if (x, y, z) is a solution, then so
is (−x,−y,−z). In this special case, glaciation and deglaciation
occur at the same rates. Physically, however, it is observed that
deglaciation occurs at a faster rate than glaciation, and s > 0
guarantees this asymmetry. All of these nondimensional param-
eters incorporate several dimensional rate constants as well as
dimensional parameters and quantities related to the global mean
sea surface temperature and the mean volume of permanent sea
ice. The full derivation of the model is given in [20, §2].

In [13], Maasch and Saltzman showed computationally that the
model (1.1) exhibits oscillatory behavior with dominating periods
of 40Kyr in response to insolation forcing with such periods, and
limit cycles with 100Kyr periods if p = 1, q = 1.2, r = 0.8, and
s = 0.8 in the absence of forcing. They also showed that a transition
from a 40Kyr cycle to a 100Kyr cycle can be achieved by slowly
varying the parameters p and r across a certain threshold.

Fig. 1.1 shows a representative 100Kyr limit cycle. Each cycle
is clearly asymmetric: a rapid deglaciation is followed by a slow
glaciation. This asymmetry arises in (1.1) for s > 0. Also, the
three variables are properly correlated: as the concentration of the
atmospheric CO2 (a greenhouse gas) increases, the climate gets
warmer, and the total ice mass decreases (deglaciation); as the
volumeofNADWincreases, the strength of theNorthAtlantic over-
turning circulation increases,more atmospheric CO2 is absorbed by
the ocean and, consequently, the atmospheric CO2 concentration
decreases.

1.2. Summary of the results

In this article, we present a dynamical systems analysis of the
internal dynamics of the Maasch–Saltzman (MS) model (1.1). We
study the model dynamics for all values q > 1 and s ≥ 0; and,
in each of the different regimes of the parameters q and s, we
use the parameters p and r as the primary bifurcation parameters.
In general terms, the main results are the identification of the
Bogdanov–Takens (BT) points [25–29] in the (p, r) plane that act as
organizing centers in the parameter space for all of the equilibria,
limit cycles, homoclinic orbits, and their bifurcations.

The first set of results is for the symmetric, slow–fast MS model,
which is obtained by setting s = 0 and taking q ≫ 1 in (1.1).
In this regime, the system is (2 + 1)-dimensional, with two slow
variables x and y and one fast variable z. We show that there is a
family of two-dimensional slow invariant manifolds along which
the fast variable is slaved to the slow variables and to which
all solutions quickly relax. We study the dynamics on the slow
manifolds. The central feature is a Z2-symmetric BT bifurcation
point, from which all bifurcation curves emanate. The curves of
Hopf bifurcations, homoclinic bifurcations, and saddle–node bifur-
cations of limit cycles determine the regions in parameter space
where the stable limit cycles exist. In addition, since all solutions
relax quickly to the slow manifolds, one can determine the basins
of attraction of the various limit cycles. These first results build
naturally on the analysis of the symmetric MS model (1.1) in the
limit q = ∞ [30].

The second set of results concerns the effects of asymmetry
(s > 0). In the regime of asymptotically large values of q (q ≫ 1),
the system (1.1) with s > 0 is also a slow–fast system, with x and
y as slow variables, and z as a fast variable. There is again a family
of exponentially attracting two-dimensional, invariant slowmani-
folds, but the symmetry-breakingmakes the dynamics on the slow
manifolds more complex. With s > 0, the limit cycles observed
in (1.1) are asymmetric, exhibiting a relatively rapid deglaciation
and a relatively slow glaciation, as shown in Fig. 1.1. The lone
Z2-symmetric BT point that exists for s = 0 splits into two generic
BT points for s > 0, and we show how the Hopf bifurcations and
homoclinic bifurcations emanating from these two BT singularities
determine the boundaries of the domains of the stable andunstable
limit cycles.

With these results in hand, we are then in a position to analyze
and visualize the dynamics of the full, asymmetric (s > 0) MS
model (1.1) for all finite values of q > 1, which is physically the
most relevant regime. We show that for all q > 1 the system
possesses a family of two-dimensional center manifolds toward
which solutions relax. Moreover, the solutions of the full system
may be accurately approximated by those of the reduced systems
on the center manifolds for all q > 1, and the manifold is at least
C1-smooth for all q greater than a critical value qc(p, r, s). On the
center manifolds, the system has a pair of BT singularities, just as
in the asymmetric slow–fast MS model, and the bifurcation curves
emanating from themorganize the systemdynamics, including the
boundaries of the domains of existence of the stable and unstable
limit cycles.

The final set of results concerns an initial investigation of the
effects of slow, linear variation of the parameters p and r in the
model (1.1), as well as of orbital forcing. We show that delayed
passage through a Hopf bifurcation, which results from the slow
parameter variation, drives the mechanism proposed by Maasch
and Saltzman for the mid-Pleistocene transition, and that the forc-
ing amplitude and frequency impact the duration of the delay.
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