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h i g h l i g h t s

• An extension of Ref. [15] to the case of noncanonical coordinates.
• Detailed description of normal form expansions in variational approaches to quantum systems.
• The method allows to apply transition state theory directly to quantum wave packets.
• The crucial mathematical steps are presented in five central theorems.
• A complete numerical example including script code is presented in the appendix.

a r t i c l e i n f o

Article history:
Received 19 October 2015
Accepted 24 February 2017
Available online 7 March 2017
Communicated by: S. Wang

Keywords:
Poincaré–Birkhoff normal form
Quantum dynamics
Canonical coordinate

a b s t r a c t

We demonstrate a general method to construct Darboux coordinates via normal form expansions in
noncanonical Hamiltonian system obtained from e.g. a variational approach to quantum systems. The
procedure serves as a tool to naturally extract canonical coordinates out of the variational parameters and
at the same time to transform the energy functional into its Poincaré–Birkhoff normal form. The method
is general in the sense that it is applicable for arbitrary degrees of freedom, in arbitrary orders of the local
expansion, and it is independent of the precise form of the Hamilton operator. The method presented
allows for the general and systematic investigation of quantum systems in the vicinity of fixed points,
which e.g. correspond to ground, excited or transition states. Moreover, it directly allows to calculate
classical and quantum reaction rates by applying transition state theory.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is at the core of physical sciences to describe and investigate the dynamics of systems. Depending on their nature, these can either
be described by the Schrödinger equation in case of quantum mechanical systems, or e.g. in terms of Hamiltonian mechanics in case of a
classical system. In both cases, a canonical structure of the dynamical equations [1,2] is inherent which is expressed in the existence of
conjugate pairs of field operators ψ̂, ψ̂† with infinite degrees of freedom or conjugate coordinates q, p with a finite number of degrees
of freedom. Both approaches serve as powerful frameworks to investigate a huge amount of different physical problems. In addition to
the global dynamics of a physical system which can be determined by solving the corresponding equations of motion, its fixed points
play a crucial role in many investigations: For example, fixed points which correspond to a (local) minimum of the Hamiltonian form
(metastable) ground states of the system. Moreover, fixed points which are related to saddle points of the Hamiltonian are unstable,
excited states. A special class of such unstable fixed points are rank-1 saddle points which possess exactly one unstable direction. These
points are of special interest in dynamical systems, because they form bottlenecks in the underlying phase space which separate different
regions therein. Considering a dynamical system, the transition from one to the other subregion of phase space is then mediated by the
saddle point. Therefore, the latter determines the reaction dynamics between the different subregions which is the basic statement of
transition state theory [3–19].

Beyond the fixed points of the system’s dynamical equations themselves, their local properties are of high interest inmany applications.
For example, the local properties of a minimum of the Hamiltonian determine the physics of the system for small excitations from the
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ground state. Moreover, the local properties in the vicinity of a rank-1 saddle point or transition state determine the reaction dynamics
and rates of the system.

For a detailed analysis of the local fixed point properties of a canonical Hamiltonian system a standard and powerful tool is its normal
form expansion [15,20,21]. Especially in the field of reaction dynamics, the normal formHamiltonian in the vicinity of rank-1 saddle points
is important, because it provides a way of defining a normally hyperbolic invariant manifold [15,18,21–34] with which a nonrecrossing
dividing surface between reactants and products in multi-degree-of-freedom systems can be constructed.

In Ref. [15], Waalkens et al. describe this procedure in detail, of which our work will be a natural extension to noncanonical coordinates.
We therefore give a brief overview of the method in the following: If the Hamiltonian H is given in terms of a set of canonical coordinates
q, p then its normal form can be constructed via the following expansion,

H̃(q, p) =

∞∑
j=0

1
j!
adj

WH(q, p). (1)

Here,W is an appropriate generating function and adWH = {W ,H} is the adjoint operator that equals the definition of the Poisson bracket.
Usually, the normal form Hamiltonian is required up to a certain polynomial order within a local expansion at a fixed point. Consequently,
it is appropriate to regard, in general, expansions of all quantities occurring in Eq. (1), i.e. the original Hamiltonian, the transformed one,
and the generating function. This procedure has the advantage that the transformation in Eq. (1) can be applied order by order. Waalkens
et al. [15] describe in detail how these single steps are performed and how exactly the generating function W needs to be constructed
through a homological equation in order to obtain the Poincaré–Birkhoff normal form of the Hamilton function (we refer the reader to
this reference for more details). The final result is then, by construction, a Hamiltonian H(J ) which depends on the actions coordinates J
all being constants of motion up to the respective order of the expansions.

With special regard to reactive systems, this normal form is of particular advantage, because – if J1 corresponds to the reaction channel
of the system, i.e. the unstable direction of a rank-1 saddle point – then a local, recrossing-free dividing surface is defined by J1 = 0, The
directional flux through the dividing surface at fixed energy E is then given by

f (E) = (2π )d−1 V(E), (2)

whereV(E) is the volume of actions (J2, . . . , Jd) enclosed by the contourH(0, J2, . . . , Jd) = E and the thermal reaction rateΓ at temperature
β = 1/kBT is obtained from the Boltzmann average of Eq. (2) which yields (cf. Ref. [35])

Γ =
1

2πβ

∫
dJ2 . . . dJd exp

(
−βH(0, J2, . . ., Jd)

)∫
dJ ′1 . . . dJ

′

d exp
(
−βH ′(J ′1, . . ., J

′

d)
) . (3)

Here, H is the normal form at the transition state and H ′ that at the metastable ground state. In this context of reaction dynamics the
importance of the knowledge of a normal form Hamiltonian and, in order to be able to actually calculate reaction rates, an explicit
construction scheme of the local action variables become obvious. We note that the work of Waalkens et al. [15] goes even beyond this by
also introducing how quantum reaction rates can be calculated within a formally equivalent procedure that merely requires a redefinition
of the adjoint operator.

It is the purpose of this paper to extend the scheme of Waalkens et al. [15] to the more general field of noncanonical Hamiltonian
systems, as e.g. quantum mechanical wave packets whose dynamics is governed by the Schrödinger equation (see below). Therefore, we
will describe in the following a quantumsystemwithin a variational approach, determine the respective dynamical equations by applying a
time-dependent variational principle [36,37], and show that it defines a general, noncanonicalHamiltonian system (see below for a precise
definition). In such quantum systems, fixed points of the dynamical equations and their local properties have the same meaning for the
quantum reaction dynamics as they have in classical systems. For a detailed analysis of the local properties, it is, therefore, desirable to
obtain an analogue of the classical normal form also for the quantum system. However, the usual treatment (1) cannot be applied, because
neither a classical Hamilton function H(q, p) in canonical coordinates nor such coordinates themselves are known.

Here, we present amethod bywhich both the transformation of the variational approach as a noncanonical Hamiltonian system into its
Poincaré–Birkhoff normal form and simultaneously the construction of canonical coordinates is obtained. The result of the transformations
is, by construction, a set of canonical normal form coordinates. In the latter, the energy functional of the system will serve as a classical
Hamilton function which has the advantageous property that it is directly formulated in action variables. If truncated at a certain order,
the constructed Hamiltonian will serve as an approximation to the true quantum system which directly allows for the application of
transition state theory and the evaluation of quantum reaction rates via Eqs. (2) and (3). In technical terms, the crucial difference between
our procedure in noncanonical coordinates and the usual treatment in canonical ones is thatwe treat the dynamical equations aswell as the
energy functional separately. From the mathematical point of view, this brings with it that the generating function of the transformation
and the corresponding operators require a different definition than in Eq. (1).

Our paper is organized as follows: In Section 2 we introduce a variational approach to quantum systems which defines a noncanonical
Hamiltonian system for the variational parameters. Furthermore, we discuss its formal relation to classical canonical mechanics and some
important fixed point properties of the linearized dynamical equations. In Section 3, themethod to construct local canonical coordinates in
the vicinity of the fixed point is introduced. Therefore, a symplectic basis formedby appropriately normalized eigenvectors of the linearized
dynamical equations is used and higher-order terms of the expansions are treated via normal form transformations. As a key feature – and
in contrast to the usual transformation (1) of canonical Hamiltonians – this procedure treats the dynamical equations and the energy
functional separately. Moreover, the normal form expansions are carried out in two steps: First, its polynomial structure is generated
using the nonresonant terms of the corresponding generating function (see below for the latters’ definition). Second, the remaining
resonant coefficients of the generating function which are free parameters are chosen in such a way that the dynamical equations as
well as the energy functional in normal form coordinates fulfil canonical equations, i.e. the normal form coordinates are canonical ones
by construction. We have written the paper such that the essential steps that go beyond the work in Refs. [15,20] are presented in the
Theorems 1–5 presented in Section 3. In the Appendix, we provide in addition both a numerical example of the presented procedure and
an exemplaryMathematica script code, in which the reader is welcome to execute the respective steps while reading the paper.
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