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h i g h l i g h t s

• Generic framework for the control of stochastic partial differential equations.
• Framework exemplified with the stochastic Kuramoto-Sivashinsky (sKS) equation.
• Control of roughening processes of sKS equation with Burgers or KPZ nonlinearity.
• Force solutions of stochastic partial differential equations to a prescribed shape.
• Controls are linear and can be both localized or periodically distributed.
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a b s t r a c t

We present a novel control methodology to control the roughening processes of semilinear parabolic
stochastic partial differential equations in one dimension, which we exemplify with the stochastic
Kuramoto-Sivashinsky equation. The original equation is split into a linear stochastic and a nonlinear
deterministic equation so that we can apply linear feedback control methods. Our control strategy is then
based on two steps: first, stabilize the zero solution of the deterministic part and, second, control the
roughness of the stochastic linear equation. We consider both periodic controls and point actuated ones,
observing in all cases that the second moment of the solution evolves in time according to a power-law
until it saturates at the desired controlled value.

© 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Roughening processes arise in nonequilibrium systems due to
the presence of different mechanisms acting on multiple time and
length scales and are typically characterized by a time-fluctuating
‘‘rough’’ interface whose dynamics are described in terms of a
stochastic partial differential equation (SPDE). Examples are found
in a broad range of different applications, including surface growth
dynamics such as e.g. surface erosion by ion sputtering pro-
cesses [1,2], film deposition in electrochemistry [3,4], or by other
methods [5,6], fluid flow in porous media [7–9], fracture dynam-
ics [10] and thin film dynamics [11–15], to name but a few. Not
surprisingly, understanding the dynamics of the fluctuating inter-
face in terms of its roughening properties, which often exhibit
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scale-invariant universal features and long-range spatiotempo-
ral correlations, has become an important problem in statistical
physics which has received considerable attention over the last
decades [16]. In addition, the ability of controlling not only the
dynamics of the surface roughness (e.g. its growth rate) but also
its convergence towards a desired saturated value has recently re-
ceived an increased interest due to its applicability in a wide spec-
trum of natural phenomena and technological applications.

Here we present a generic linear control methodology for
controlling the surface roughness, i.e., the variance of the solution,
of nonlinear SPDEs which we exemplify with the stochastic
Kuramoto–Sivashinsky (sKS) equation. The starting point is to split
the original SPDE into a stochastic linear part and a deterministic
nonlinear part, and to apply existing controlmethodologies [17,18]
to the nonlinear deterministic part. Our control strategy is based
on two steps: first, stabilize the zero solution of the deterministic
system and, second, control the second moment of the solution
of the stochastic linear equation (e.g. a measure of the surface
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roughness) to evolve towards any desired value. By considering
either periodic or point actuated controls, our results show that
the second moment of the solution grows in time according to a
power-law with a well-defined growth exponent until it saturates
to the prescribed value we wish to achieve.

It is important to note that other control strategies have
been proposed previously for controlling the surface roughness
and other quantities of interest, such as the film porosity and
film thickness in various linear dissipative models, including
the stochastic heat equation, the linear sKS equation, and the
Edwards–Wilkinson (EW) equation; see e.g. [5,6,19–25]. However,
it should also be emphasized that most of these works involve
the use of nonlinear feedback controls which change the dynamics
of the system and require knowledge of the nonlinearity at all
times, something that may be difficult to achieve. We believe
that our framework offers several distinct advantages since the
controls we derive and use are linear functions of the solution
which do not affect the overall dynamics of the system and also
decrease the computational cost. Another recent study is Ref. [26]
which considered a deterministic version of the KS equation,
and presented a numerical study of the effects of the use of ion
bombardment which varies periodically in time on the patterns
induced by the ion beams on an amorphous material. In particular,
this study found that rocking the material sample about an axis
orthogonal to the surface normal and the incident ion beam, which
corresponds to making the coefficients of the KS equation periodic
in time, can lead to suppression of spatiotemporal chaos.

The work presented in this paper is motivated by earlier re-
search carried out by our group: on one hand, the study of noise
induced stabilization for the KS equation [27,28] and, on the other
hand, the study of optimal and feedback control methodologies for
the KS equation and related equations that are used in the model-
ing of falling liquid films [17,18,29]. It was shown in [27,28] that
an appropriately chosen noise can be used in order to suppress lin-
ear instabilities in the KS equation, close to the instability thresh-
old. Furthermore, it was shown in [17,18] that nontrivial steady
states and unstable traveling wave solutions of the deterministic
KS equation can be stabilized using appropriate optimal and feed-
back control methodologies. In addition, similar feedback control
methodologies can be used in order to stabilize unstable solutions
of related PDEs used in the modeling of falling liquid films, such
the Benney and weighted-residuals equations.

The rest of the paper is structured as follows. Section 2 intro-
duces the sKS equation and discusses means to characterize the
roughening process of its solution. In Section 3 we outline the gen-
eral linear controlmethodologywhich is applied to the case of peri-
odic controls in Section 4, and point actuated controls in Section 5.
A summary and conclusions are offered in Section 6.

2. The stochastic Kuramoto–Sivashinsky (sKS) equation

Consider the sKS equation:

ut = −νuxxxx − uxx − uux + σξ(x, t), (1)

normalized to 2π domains (x ∈ [0, 2π ]) with ν = (2π/L)2 >
0, where L is the size of the system, with periodic boundary
conditions (PBCs) and initial condition u(x, 0) = φ(x). ξ(x, t)
denotes Gaussian mean-zero spatiotemporal noise, which is taken
to be white in time, and whose strength is controlled by the
parameter σ :
ξ(x, t)ξ(x′, t ′)


= G(x − x′)δ(t − t ′), (2)

where G(x− x′) represents its spatial correlation function. We can,
in principle, consider the control problem for SPDEs of the form (1)
driven by noise that is colored in both space and time. Such a

noise can be described using a linear SPDE (Ornstein–Uhlenbeck
process) [30].

The noise term can be expressed in terms of its Fourier
components as:

ξ(x, t) =

∞
k=−∞

qk Ẇk(t) eikx, (3)

where Ẇk(t) is a Gaussian white noise in time and the coefficients
qk are the eigenfunctions of the covariance operator of the noise.
For example, if G(x − x′) = δ(x − x′) (which corresponds to
space–time white noise), we have qk = 1. For the noise to be
real-valued, we require that the coefficients qk verify q−k = qk.
Proofs of existence and uniqueness of solutions to Eq. (1) can be
found in [31,32], for example. The behavior of Eq. (1) as a function
of the noise strength, and for particular choices of the coefficients
{qk} has been analyzed in detail in [27,28]. In particular, it was
shown that sKS solutions undergo several state transitions as the
noise strength increases, including critical on–off intermittency
and stabilized states.

The quadratic nonlinearity in Eq. (1) is typically referred to as a
Burgers nonlinearity. We note that an alternative version of Eq. (1)
is found by making the change of variable u = −hx, giving rise to

ht = −νhxxxx − hxx +
1
2
(hx)

2
+ ση(x, t), (4)

where ξ(x, t) = ∂xη(x, t). The main effect of this transformation
is to change the dynamics of the average u0(t) =

1
2π

 2π
0 u(x, t) dx

of the solution. Indeed, Eq. (1) with PBCs preserves the value of u0
whereas as a consequence of the nonlinear term (hx)

2, Eq. (4) does
not conserve the mass h0(t) =

1
2π

 2π
0 h(x, t) dx. Both equations

have received a lot of attention over the last decades, with Eq. (1)
more appropriate inmass-conserved systems such as the dynamics
of thin liquid films [28,11–15], and Eq. (4) relevant in modeling
surface growth processes such as surface erosion by ion sputtering
processes [3,4,1,2,33,22,34]. It is also worth mentioning that the
quadratic nonlinearity appearing in Eq. (4) is the same as that in
the Kardar–Parisi–Zhang (KPZ) equation [35,36]

ht = hxx +
1
2
(hx)

2
+ ση(x, t). (5)

In fact extensive work indicates that Eqs. (4) and (5) are
asymptotically equivalent, something referred to as the ‘‘Yakhot
conjecture’’ [37–39]. Throughout the remainder of this study we
will refer to Eq. (1) as the sKS equation with Burgers nonlinearity
and Eq. (4) as the sKS equation with KPZ nonlinearity.

2.1. Surface roughening

An important feature of systems involving dynamics of rough
surfaces is that one often observes the emergence of scale
invariance both in time and space, i.e., the statistical properties of
quantities of interest are described in terms of algebraic functions
of the form f (t) ∼ tβ or g(x) ∼ xα , where α and β are referred to
as scaling exponents. An example of this is the surface roughness,
or variance of u(x, t), which is defined as

r(t) =


1
2π

 2π

0
[u(x, t) − u0(t)]2 dx. (6)

We remark that u0 may or may not depend on time, depending on
whetherwe consider the Burgers or the KPZ nonlinearities. Usually
the above quantity grows in time until it reaches a saturated
regime, inwhich the fluctuations become statistically independent
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