
Physica D 360 (2017) 36–45

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

A coherent structure approach for parameter estimation in
Lagrangian Data Assimilation
John Maclean a,*, Naratip Santitissadeekorn b, Christopher K.R.T. Jones a

a Department of Mathematics and RENCI, University of North Carolina at Chapel Hill, United States
b Department of Mathematics, University of Surrey, Guildford, United Kingdom

h i g h l i g h t s

• Coherent patterns can be used to form effective data assimilation schemes.
• A Pattern-based distance is used in a likelihood-free data assimilation.
• The pattern-based scheme is unaffected by chaotic advection.
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a b s t r a c t

We introduce a data assimilation method to estimate model parameters with observations of passive
tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual
Lagrangian Data Assimilation approach, where parameters are estimated based on tracer trajectories.
We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood
function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte
Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from
tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap
particle filter when the physical model exhibits chaotic advection.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The problem of assimilating the path travelled by ocean in-
struments such as drifters to estimate states and/or parameters of
dynamical systems is commonly known as Lagrangian data assim-
ilation (LaDA). Every method for LaDA depends on the knowledge
of error statistics for the observed position of the drifter paths;
typically, it assumes the normal likelihood function and uncorre-
lated errors of observed position among all drifters. In this paper,
we explore a novel idea for LaDA that assimilates a ‘‘coherent (or
persistent) structure’’ hidden in the Lagrangian path of the drifters
instead of directly using the observed positions. We discuss the
main advantage of this idea in the situation where the number
of drifters is large, observed position has small variance and the
flow is chaotic. We also demonstrate the improved accuracy of
the parameter estimates of the newmethodwhen comparing with
the particle filtering (PF) approach, which is apparent if the drifter
paths are dominated by chaotic advection.
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Modern satellite-tracked ocean drifters [1,2] have been recog-
nized as an important source of data for oceanographic and climate
research. Drifters travel near the surface and measure physical
data such as surface temperature along their paths via drifter
sensors [3]. In addition, they offer Lagrangian path data through
the Doppler frequency shift on their satellite-based transmission.
The accuracy of drifter locations can be less than 150 m [2], and
there is a global ocean drifter set providing measurement data at a
mean time interval of 1.2 h spanning over a decade [1].

Oceanographic flows exhibit patterns at scales from metres
to kilometres, and correspondingly drifters are seen to move in
eddies or gyres and follow currents, creating small and large-scale
patterns which can be used to infer the sea-surface flows [4,5].
These patterns are associated with fundamental structures of the
flow, including stable and unstable directions, centres and saddles.
The goal of the current work is to infer the underlying flow state,
or the parameter set governing the flow, from the patterns rather
than directly from the drifter trajectories.

Several LaDA methods have been presented in the last decade
for sequentially assimilating Lagrangian path data into dynamical
system models of the ocean [6–14]. These methods append a La-
grangian model of the drifter locations to the Eulerian flow model
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in order to make inferences about how drifter locations correlate
withmodel states; this approach also avoids the difficulty inwhich
Lagrangian path data does not correspond to the fixed Eulerian
grid locations. The key challenge of Lagrangian Data Assimilation
(LaDA) is that the Lagrangian path of the passive tracers or drifters
can be strongly nonlinear, which makes it difficult to sequentially
estimate model state variables or parameters by computationally
efficient methods such as the Ensemble Kalman filter (EnKF) [10].
It has been emphasized in several pieces of work that a nonlin-
ear, Bayesian filtering framework such as the Particle Filter (PF)
is more reliable in quantifying the uncertainty of the estimates
[9–11,13,15]. However, when the drifter locations are observed
at a high accuracy (e.g. the class-three Argos), the observation is
considered to be highly informative, corresponding to a likelihood
probability with a small variance in the Bayesian framework. As-
similating highly-informative observations in a high-dimensional
space is problematic since significant probability is contained in
a region of extremely small ‘‘volume’’. The standard PF tends to
perform very poorly in such a regime [16]. With a narrow prior,
it is probable that no particles will lie in a region of significant
probability after a short amount of time. In this situation the PF
weights, which fall off exponentially, assign probability one to a
single particle and probability 0 to the rest. Therefore, it would be
difficult to apply PF or its variants to high-dimensional models of
the ocean, or assimilate data from a large number of drifters, such
as the approximately 2200 ocean drifters from the Global Ocean
drifter Program (www.aoml.noaa.gov/envids/gld/). The problem
of drawing inference from drifter trajectories is compounded by
factors which tend to separate the numerically simulated drifters
from the true trajectories. One such factor is model error, which
is not considered in this paper. A second factor of particular im-
portance to the current work is chaotic advection in the flow,
which can readily create a situation where the simulated and
observed drifter trajectories will appear unrelated, particularly if
the observations are sparse.

A hybrid PF-EnKF method has been proposed to reduce the
computational cost in high-dimensional problems [17,18]; in this
approach it is assumed that the Eulerian flow model is high-
dimensional and the Lagrangian model for the drifter locations is
low-dimensional. A similar idea using a hybrid PF-EnKF to assim-
ilate the Lagrangian path data has also been developed in [13,14]
where EnKF is used to estimate drifter paths in tandemwith PF for
parameter estimation. However, to the best of our knowledge, the
challenge of assimilating a high-dimensional drifter data set is still
an open problem.

These issues motivate us to exploit the qualitative structure
of complex nonlinear flows – such as coherent structures or per-
sistent patterns, if they exist – to make inferences on the model
parameters.

The idea of exploiting such structures is related at a high level
of abstraction to other efforts to exploit the structure of nonlinear
flows. We mention specifically the earlier work [19], that uses
‘bred vectors’ to construct the model ensemble. The goal of the
prior work is to create an ensemble that correctly represents the
extent and directions of model uncertainty; data assimilation then
proceeds according to standard methods. By contrast in this work
it is assumed that some informative structure is already present,
but hidden, in the model forecast and observations. The goal is
to design a data assimilation scheme that explicitly exposes and
assimilates the structures in both model and observations.

In particular, we will exploit a large-scale ‘‘Lagrangian coherent
pattern’’ or just ‘‘coherent pattern’’ hidden in the Lagrangian path
data. The coherent pattern is imprecisely defined as a region in
state space, for example a coherent vortex or nonlinear jet, that
moves along with the flow without dispersing. Coherent patterns
must also be robust under small diffusive perturbations, that is, the

coherent object should still hold its geometric structure together
under some diffusion process. When the flow is known either
numerically or in a closed form, these coherent regions can be
identified by several approaches. In the probabilistic approach, the
almost invariant-set framework was developed for autonomous
and periodic flows by using the transfer (or Perron–Frobenius)
operator [20–23] or the infinitesimal generator [24]; the latter
reduces the high computational cost of the former approach. For
nonautonomous flows, the finite-time coherent set method via a
transfer operatorwas introduced for the first time in [25–27] and it
was applied to detect long-lived vortices such as the stratospheric
polar vortex [26,27] and Agulhas rings [28], both as two and three
dimensional coherent objects. Thismethodhas a strong connection
with spectral clustering as described in Chapter of 4 of [29]. The
coherent region as used in these works probabilistically minimizes
the mass transport in and out of the region with respect to a refer-
ence measure (not necessarily the invariant measure), see [26,30]
for full details.

Unfortunately, all of the above coherent set identificationmeth-
ods require a set of governing equations of the underlying dynam-
ics and cannot be applied to identify the coherent pattern directly
from the Lagrangian path data, which is an essential goal of using
LaDA in the current work. Recently, new data-driven algorithms
have been developed that can extract coherent patterns from
possibly sparse Lagrangian path data without having to rely on
governing equations. To name a few, these methods include the
diffusion-map algorithm [31], fuzzy c-mean algorithm [32], bi-
partite spectral clustering [33] and dynamic mode decomposition
(DMD) [34,35]. These methods can capture the time-dependent
coherent pattern that represents a slowly-decaying mode of a
complex flow field.

It is not a primary concern of this paper to select or consider
the ideal algorithms to identify the spatio-temporal coherent pat-
terns in a general context, but to advocate for a methodology in
which identified coherent patterns are assimilated in a Bayesian
framework. For this reason, numerical examples in this paper
will be limited to the case of a stationary spatial pattern where
an application of standard principal component analysis (PCA) is
satisfactory for the coherent pattern identification.Wewill provide
a brief review of PCA in Section 2.

In Bayesian data assimilation, a closed form of the likelihood
function for the coherent pattern must be known. However, even
if the likelihood of tracer positions is commonly known, it is still a
difficult task to derive the likelihood function of any corresponding
coherent patterns. We will address this issue by applying the so-
called ‘‘Approximate’’ Bayesian computation (ABC) [36], which can
be thought of as a ‘‘likelihood-free’’ Monte Carlo method. Origi-
nally, the ABC method was proposed to avoid evaluating a likeli-
hood function that is computationally expensive by constructing
a ‘‘distance function’’ together with a summary statistic in a
rejection–acceptance algorithm. In our context, this summary
statistic is the coherent pattern. It is typically impossible to con-
struct the required distance function without knowledge of the
likelihood function of the coherent pattern; we will argue that
given the likelihood function is unknown, a distance function with
minima in the most likely regions of parameter values is a useful
surrogate. We will discuss our choice of the distance function in
Section 3 and ABC methods in Section 5.

2. Coherent spatial patterns via PCA

As we will make inference about model parameters based on
the coherent pattern of the flow, we use the dominant eigenvector
(corresponding to the eigenvalue with the largest magnitude) of
the covariance matrix as a representative of the coherent pat-
tern, as conventionally performed by the Principal Component
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